Gömnigk, Dorfstraße 47a 14822 Brück

Funk: 0172-3837135 e-mail: mp-brueck@t-online.de

Statische Berechnung

Tel.: 033844-51073

Fax: 033844-51999

Bauvorhaben:

Neubau einer Seebrücke mit Restaurant

Campingplatz Himmelreich Wentorfinsel

D-14548 Schwielowsee OT Caputh

Bauherr:

Herr

ROGER GROSS

Weinbergstraße 9

D-14548 Schwielowsee OT Caputh

Architekt:

ARCHITEKTUR/LICHTKUNST

JÖRG BECKER

Krugweg 50

D-14548 Schwielowsee

Tragwerksplanung:

BAUPLANUNGSBÜRO

MIKE PRUDLIK

Gömnigk, Dorfstraße 47a

D-14822 Brück

Auftrags-Nr.:

T15-08

Datum:

04.09.2015

Bearbeiter:

Dipl.-Ing.(FH) Mike Prudlik

Tel.: 0 33 844 / 51 0 73

jh. f.?.

Proj.Bez Neubau einer Seebrücke mit Restaurant

Teilprojekt1

04.09.2015

Seite

Projekt

Seebrücke

2

Inhal tsverzei chni s

Teilproj.:

Datum

TB Ti tel bl att Inhal t 1 Inhal t 1 Inhal t 2 P1 Schwal benschwanzpl atten 3 U1 Stahträger - Auflager Schwal benschwanzpl atten 4 U1.1 Stahträger - Auflager Schwal benschwanzpl atten 9 U2 Stahträger - Auflager Schwal benschwanzpl atten 14 U3 Unterzug - Stahträger 29 U4 Unterzug - Stahl träger 29 R1 Stahl rahmenkonstruktion 33 R2 Stahl rahmenkonstruktion 41 R3 Stahl -Rahmenknoten, geschraubt 46 R4 Stahl -Rahmenknoten, geschraubt 52 V21 Stahträger mit Einzellast 61 U22 Stahl träger mit Einzellast 65 U22 Stahl träger stahträger 70 E2 Unterzug - Stahträger 70 E3 Unterzug - Stahträger 84 E4 Unterzug - Stahträger 88 E5 Unterzug - Stahträger 95 E7 Stahl rahmenkonstruktion 95	<u>Position</u>	Beschrei bung	Sei te
U1. 1 Stahträger - Auflager Schwalbenschwanzplatten 14 U3 Unterzug - Stahträger 19 U4 Unterzug - Stahlträger 24 Unterzug - Stahlträger 29 Stahlträger 29 Stahlträger 29 Stahlträger 30 Stahlrahmenkonstruktion 33 R2 Stahl-Rahmenkonstruktion 41 R3 Stahl-Rahmenkonstruktion 41 R4 Stahl-Rahmenkonten, geschraubt 52 Stahlträger 57 UZ1 Stahlträger mit Einzellast 57 UZ1 Stahlträger mit Einzellast 65 Stahlträger mit Einzellast 65 Stahlträger 70 Unterzug - Stahträger 70 Stahlträger 70 Unterzug - Stahträger 70 Unterzug - Stahträg	ТВ	Ti tel bl att	
U1. 1 Stahträger - Auflager Schwalbenschwanzplatten 14 U3 Unterzug - Stahträger 19 U4 Unterzug - Stahlträger 24 Unterzug - Stahlträger 29 Stahlträger 29 Stahlträger 29 Stahlträger 30 Stahlrahmenkonstruktion 33 R2 Stahl-Rahmenkonstruktion 41 R3 Stahl-Rahmenkonstruktion 41 R4 Stahl-Rahmenkonten, geschraubt 52 Stahlträger 57 UZ1 Stahlträger mit Einzellast 57 UZ1 Stahlträger mit Einzellast 65 Stahlträger mit Einzellast 65 Stahlträger 70 Unterzug - Stahträger 70 Stahlträger 70 Unterzug - Stahträger 70 Unterzug - Stahträg	5.4		2
U1. 1 Stahträger - Auflager Schwalbenschwanzplatten 14 U3 Unterzug - Stahträger 19 U4 Unterzug - Stahlträger 24 Unterzug - Stahlträger 29 Stahlträger 29 Stahlträger 29 Stahlträger 30 Stahlrahmenkonstruktion 33 R2 Stahl-Rahmenkonstruktion 41 R3 Stahl-Rahmenkonstruktion 41 R4 Stahl-Rahmenkonten, geschraubt 52 Stahlträger 57 UZ1 Stahlträger mit Einzellast 57 UZ1 Stahlträger mit Einzellast 65 Stahlträger mit Einzellast 65 Stahlträger 70 Unterzug - Stahträger 70 Stahlträger 70 Unterzug - Stahträger 70 Unterzug - Stahträg			3
U2 Stahträger - Auflager Schwalbenschwanzplatten 14 U3 Unterzug - Stahlträger 24 U5 Unterzug - Stahlträger 29 R1 Stahl rahmenkonstruktion 33 R2 Stahl rahmenkonstruktion 41 R3 Stahl -Rahmenknoten, geschraubt 46 R4 Stahl -Rahmenknoten, geschraubt 52 S1 Stahl stütze 57 UZ1 Stahträger mit Einzellast 61 U22 Stahl träger mit Einzellast 65 E1 Unterzug - Stahträger 70 E2 Unterzug - Stahträger 74 E3 Unterzug - Stahträger 88 E6 Unterzug - Stahträger 88 E6 Unterzug - Stahträger 92 E7 Stahl rahmenkonstruktion 95 E7.1 Stahl rahmenkonstruktion 106 E8 Stahl -Rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 122 K1 StbVoll platte 130		Stantrager - Auflager Schwalbenschwanzplatten	4
U3 Unterzug - Stahlträger 19 U4 Unterzug - Stahlträger 24 U5 Unterzug - Stahlträger 29 R1 Stahlrahmenkonstruktion 33 R2 Stahl rahmenkonstruktion 41 R3 Stahl rahmenknoten, geschraubt 46 R4 Stahl stütze 57 UZ1 Stahlstütze 57 UZ1 Stahlstütze 57 UZ1 Stahlräger mit Einzellast 65 E1 Unterzug - Stahträger 70 E2 Unterzug - Stahträger 70 E3 Unterzug - Stahträger 79 E4 Unterzug - Stahträger 88 E6 Unterzug - Stahträger 92 E7 Stahl rahmenkonstruktion 95 E7.1 Stahl rahmenkonstruktion 95 E7.1 Stahl rahmenkonstruktion 106 E8 Stahl rahmenkonstruktion 106 E8 Stahl rahmenkonstruktion 106 E8 Stahl rahmenkonstruktion </td <td></td> <td>Stantrager - Auflager Schwalbenschwanzplatten</td> <td></td>		Stantrager - Auflager Schwalbenschwanzplatten	
U4 Unterzug - Stahl träger 24 U5 Unterzug - Stahl träger 29 R1 Stahl rahmenkonstrukti on 33 R2 Stahl rahmenkonten, geschraubt 41 R3 Stahl -Rahmenknoten, geschraubt 52 R4 Stahl stütze 57 UZ1 Stahträger mit Einzellast 61 UZ2 Stahl träger mit Einzellast 65 E1 Unterzug - Stahträger 70 E2 Unterzug - Stahträger 70 E2 Unterzug - Stahträger 79 E4 Unterzug - Stahträger 84 E5 Unterzug - Stahträger 88 E6 Unterzug - Stahträger 92 E7 Stahl rahmenkonstrukti on 95 E7. 1 Stahl rahmenkonstrukti on 106 E8 Stahl - Rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 112 K1 Stb Vol I pl atte 120 K2 Stb Vol I pl atte 130 K3			
U5 Unterzuğ - Stahl träğer 29 R1 Stahl rahmenkonstrukti on 33 R2 Stahl rahmenkonstrukti on 41 R3 Stahl -Rahmenknoten, geschraubt 46 R4 Stahl -Rahmenknoten, geschraubt 52 S1 Stahl stütze 57 UZ1 Stahträger mit Einzellast 65 UZ2 Stahl träger mit Einzellast 65 E1 Unterzug - Stahträger 70 E2 Unterzug - Stahträger 74 E3 Unterzug - Stahträger 84 E4 Unterzug - Stahträger 88 E5 Unterzug - Stahträger 88 E6 Unterzug - Stahträger 88 E7 Stahl rahmenkonstrukti on 95 E7.1 Stahl rahmenkonstrukti on 106 E8 Stahl -Rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 118 E10 Stahl stütze 122 K1 StbVollplatte 130 K2 <t< td=""><td></td><td></td><td></td></t<>			
R1 Stahl rahmenkonstrukti on 33 R2 Stahl rahmenkonstrukti on 41 R3 Stahl -Rahmenknoten, geschraubt 46 R4 Stahl -Rahmenknoten, geschraubt 52 S1 Stahl stütze 57 UZ1 Stahl träger mit Einzellast 61 UZ2 Stahl träger mit Einzellast 65 E1 Unterzug - Stahträger 70 E2 Unterzug - Stahträger 79 E4 Unterzug - Stahträger 84 E5 Unterzug - Stahträger 88 E6 Unterzug - Stahträger 88 E6 Unterzug - Stahträger 92 E7 Stahl rahmenkonstrukti on 95 E7.1 Stahl rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 126 K1 StbVoll pl atte 126 K2 StbVoll pl atte 130 K3 StbVoll pl atte 134 K4 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 151 K7 Unterzug - Stahträg			
R2 Stahl rahmenkonstrukti on 41 R3 Stahl -Rahmenknoten, geschraubt 46 R4 Stahl -Rahmenknoten, geschraubt 52 S1 Stahl stütze 57 UZ1 Stahlträger mit Einzellast 61 UZ2 Stahlträger mit Einzellast 65 E1 Unterzug - Stahträger 70 E2 Unterzug - Stahträger 74 E3 Unterzug - Stahträger 79 E4 Unterzug - Stahträger 84 E5 Unterzug - Stahträger 88 E6 Unterzug - Stahträger 92 E7 Stahl rahmenkonstrukti on 95 E7.1 Stahl rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 118 E10 Stahl stütze 122 K1 StbVol I pl atte 126 K2 StbVol I pl atte 130 K3 StbVol I pl atte 134 K4 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 151 K8 Unterzug - Stahträger		Stahl rahmenkonstrukti on	
R3 Stahl-Rahmenknoten, geschraubt 46 R4 Stahl-Rahmenknoten, geschraubt 52 S1 Stahl stütze 57 UZ1 Stahträger mit Einzellast 61 UZ2 Stahlträger mit Einzellast 65 E1 Unterzug - Stahträger 70 E2 Unterzug - Stahträger 74 E3 Unterzug - Stahträger 84 E4 Unterzug - Stahträger 88 E5 Unterzug - Stahträger 88 E6 Unterzug - Stahträger 92 E7 Stahl rahmenkonstruktion 95 E7.1 Stahl rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 118 E10 Stahl stütze 122 K1 StbVol I pl atte 126 K2 StbVol I pl atte 130 K3 StbVol I pl atte 134 K4 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 151 K8 Unterzug - Stahträger <td< td=""><td></td><td></td><td></td></td<>			
R4 Stahl -Rahmenknoten, geschraubt 52 S1 Stahl stütze 57 UZ1 Stahträger mit Einzellast 61 UZ2 Stahl träger mit Einzellast 65 E1 Unterzug - Stahträger 70 E2 Unterzug - Stahträger 74 E3 Unterzug - Stahträger 84 E4 Unterzug - Stahträger 88 E5 Unterzug - Stahträger 92 E7 Stahl rahmenkonstrukti on 95 E7.1 Stahl rahmenkonstrukti on 95 E7.1 Stahl rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 126 K1 StbVol I pl atte 126 K2 StbVol I pl atte 130 K3 StbVol I pl atte 134 K4 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 146 K7 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 151 K6 Unterzug - Stahträger			
UZ1 Stahträger mit Einzellast 65 E1 Unterzug - Stahträger 70 E2 Unterzug - Stahträger 77 E3 Unterzug - Stahträger 79 E4 Unterzug - Stahträger 84 E5 Unterzug - Stahträger 88 E6 Unterzug - Stahträger 92 E7 Stahlrahmenkonstruktion 95 E7. 1 Stahlrahmenkonstruktion 95 E8 Stahl-Rahmenkonstruktion 106 E8 Stahl-Rahmenkonstruktion 112 E9 Unterzug - Stahträger 118 E10 Stahlstütze 122 K1 StbVollplatte 126 K2 StbVollplatte 126 K3 StbVollplatte 130 K4 Unterzug - Stahträger 138 K5 Unterzug - Stahträger 138 K5 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 145 K7 Unterzug - Stahträger 155 K8 Unterzug - Stahträger 156 Plan_P1 Positionsplan Ebene 0 162			
UZ2Stahlträger mit Einzellast65E1Unterzug - Stahträger70E2Unterzug - Stahträger74E3Unterzug - Stahträger84E4Unterzug - Stahträger88E5Unterzug - Stahträger88E6Unterzug - Stahträger92E7Stahl rahmenkonstrukti on95E7. 1Stahl rahmenkonstrukti on106E8Stahl -Rahmenknoten, geschraubt112E9Unterzug - Stahträger118E10Stahl stütze122K1StbVol I pl atte126K2StbVol I pl atte134K3StbVol I pl atte134K4Unterzug - Stahträger138K5Unterzug - Stahträger142K6Unterzug - Stahträger146K7Unterzug - Stahträger156K8Unterzug - Stahträger156Flan_P1Positionsplan Ebene +1161Plan_P2Positionsplan Ebene 0162			
E1 Unterzug - Stahträger 70 E2 Unterzug - Stahträger 74 E3 Unterzug - Stahträger 84 E4 Unterzug - Stahträger 88 E5 Unterzug - Stahträger 92 E7 Stahl rahmenkonstrukti on 95 E7. 1 Stahl rahmenkonstrukti on 106 E8 Stahl -Rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 118 E10 Stahl stütze 122 K1 StbVol I pl atte 126 K2 StbVol I pl atte 130 K3 StbVol I pl atte 134 K4 Unterzug - Stahträger 138 K5 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 151 K7 Unterzug - Stahträger 156 Pl an_P1 Posi ti onspl an Ebene +1 161 Pl an_P2 Posi ti onspl an Ebene 0 162		Stahträger mit Einzellast	
E2 Unterzug - Stahträger 74 E3 Unterzug - Stahträger 79 E4 Unterzug - Stahträger 84 E5 Unterzug - Stahträger 88 E6 Unterzug - Stahträger 92 E7 Stahl rahmenkonstrukti on 95 E7. 1 Stahl rahmenkonstrukti on 106 E8 Stahl -Rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 118 E10 Stahl stütze 122 K1 StbVoll pl atte 126 K2 StbVoll pl atte 130 K3 StbVoll pl atte 134 K4 Unterzug - Stahträger 138 K5 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 156 Pl an_P1 Posi ti onspl an Ebene +1 161 Pl an_P2 Posi ti onspl an Ebene 0 162			
E3 Unterzug - Stahträger 79 E4 Unterzug - Stahträger 84 E5 Unterzug - Stahträger 92 E6 Unterzug - Stahträger 92 E7 Stahl rahmenkonstrukti on 95 E7. 1 Stahl rahmenkonstrukti on 106 E8 Stahl - Rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 118 E10 Stahl stütze 122 K1 Stb Vol I pl atte 130 K2 Stb Vol I pl atte 130 K3 Stb Vol I pl atte 134 K4 Unterzug - Stahträger 138 K5 Unterzug - Stahträger 146 K6 Unterzug - Stahträger 145 K7 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 156 Pl an_P1 Posi ti onspl an Ebene +1 161 Pl an_P2 Posi ti onspl an Ebene 0 162		Unterzug - Stantrager	
E4 Unterzug - Stahträger 84 E5 Unterzug - Stahträger 92 E6 Unterzug - Stahträger 92 E7 Stahl rahmenkonstrukti on 95 E7. 1 Stahl rahmenkonstrukti on 106 E8 Stahl -Rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 118 E10 Stahl stütze 122 K1 StbVoll pl atte 126 K2 StbVoll pl atte 130 K3 StbVoll pl atte 134 K4 Unterzug - Stahträger 138 K5 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 156 Pl an_P1 Posi ti onspl an Ebene +1 161 Pl an_P2 Posi ti onspl an Ebene 0 162		Unterzug - Stantrager	
E5 Unterzug - Stahträger 92 E7 Stahlrahmenkonstruktion 95 E7. 1 Stahlrahmenkonstruktion 106 E8 Stahl-Rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 118 E10 Stahlstütze 122 K1 StbVollplatte 126 K2 StbVollplatte 130 K3 StbVollplatte 130 K4 Unterzug - Stahträger 134 K5 Unterzug - Stahträger 134 K6 Unterzug - Stahträger 146 K7 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 151 K9 Unterzug - Stahträger 152 K9 Unterzug - Stahträger 153 K9 Unterzug - Stahträger 154 K9 Unterzug - Stahträger 156		Unterzug - Stanträger	
E6 Unterzug - Stahträger 92 E7 Stahl rahmenkonstrukti on 95 E7. 1 Stahl rahmenkonstrukti on 106 E8 Stahl - Rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 118 E10 Stahl stütze 122 K1 Stb Vol I pl atte 126 K2 Stb Vol I pl atte 130 K3 Stb Vol I pl atte 134 K4 Unterzug - Stahträger 138 K5 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 156 Pl an_P1 Posi ti onspl an Ebene +1 161 Pl an_P2 Posi ti onspl an Ebene 0 162			
E7 Stahlrahmenkonstruktion 95 E7. 1 Stahlrahmenkonstruktion 106 E8 Stahl-Rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 118 E10 Stahlstütze 122 K1 StbVollplatte 126 K2 StbVollplatte 130 K3 StbVollplatte 130 K4 Unterzug - Stahträger 138 K5 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 146 K7 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 156 Plan_P1 Positionsplan Ebene +1 Plan_P2 Positionsplan Ebene 0 162			
E7. 1 Stahl rahmenkonstruktion 106 E8 Stahl - Rahmenknoten, geschraubt 112 E9 Unterzug - Stahträger 118 E10 Stahl stütze 122 K1 Stb Vollplatte 126 K2 Stb Vollplatte 130 K3 Stb Vollplatte 134 K4 Unterzug - Stahträger 138 K5 Unterzug - Stahträger 142 K6 Unterzug - Stahträger 146 K7 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 156 Plan_P1 Positionsplan Ebene +1 161 Plan_P2 Positionsplan Ebene 0 162			
E8 Stahl-Rahmenknoten, geschraubt E9 Unterzug - Stahträger E10 Stahlstütze K1 StbVollplatte K2 StbVollplatte K3 StbVollplatte K4 Unterzug - Stahträger K5 Unterzug - Stahträger K6 Unterzug - Stahträger K7 Unterzug - Stahträger K8 Unterzug - Stahträger K9 Unterzug - Stahträger K10 Unterzug - Stahträger K110 Stahträger K2 Unterzug - Stahträger K3 Unterzug - Stahträger K4 Unterzug - Stahträger K5 Unterzug - Stahträger K6 Unterzug - Stahträger K7 Unterzug - Stahträger K8 Unterzug - Stahträger K9 Unterzug - Stahträg			
E9Unterzug - Stahträger118E10Stahl stütze122K1StbVoll pl atte126K2StbVoll pl atte130K3StbVoll pl atte134K4Unterzug - Stahträger138K5Unterzug - Stahträger142K6Unterzug - Stahträger146K7Unterzug - Stahträger151K8Unterzug - Stahträger156Plan_P1Positionsplan Ebene +1161Plan_P2Positionsplan Ebene 0162			
K1StbVollplatte126K2StbVollplatte130K3StbVollplatte134K4Unterzug - Stahträger138K5Unterzug - Stahträger142K6Unterzug - Stahträger146K7Unterzug - Stahträger151K8Unterzug - Stahträger156Plan_P1Positionsplan Ebene +1161Plan_P2Positionsplan Ebene 0162	E9		118
K2StbVollplatte130K3StbVollplatte134K4Unterzug - Stahträger138K5Unterzug - Stahträger142K6Unterzug - Stahträger146K7Unterzug - Stahträger151K8Unterzug - Stahträger156Plan_P1Positionsplan Ebene +1161Plan_P2Positionsplan Ebene 0162	E10	Stahl stütze	
K3StbVollplatte134K4Unterzug - Stahträger138K5Unterzug - Stahträger142K6Unterzug - Stahträger146K7Unterzug - Stahträger151K8Unterzug - Stahträger156Plan_P1Positionsplan Ebene +1161Plan_P2Positionsplan Ebene 0162			
K4Unterzug - Stahträger138K5Unterzug - Stahträger142K6Unterzug - Stahträger146K7Unterzug - Stahträger151K8Unterzug - Stahträger156Plan_P1Positionsplan Ebene +1161Plan_P2Positionsplan Ebene 0162			
K5Unterzug - Stahträger142K6Unterzug - Stahträger146K7Unterzug - Stahträger151K8Unterzug - Stahträger156Plan_P1Positionsplan Ebene +1161Plan_P2Positionsplan Ebene 0162		StbVoliplatte	
K7 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 156 Plan_P1 Positionsplan Ebene +1 161 Plan_P2 Positionsplan Ebene 0 162		Unterzug - Stantrager	
K7 Unterzug - Stahträger 151 K8 Unterzug - Stahträger 156 Plan_P1 Positionsplan Ebene +1 161 Plan_P2 Positionsplan Ebene 0 162		Unterzug - Stahträger	
K8Unterzug - Stahträger156Plan_P1Positionsplan Ebene +1161Plan_P2Positionsplan Ebene 0162		Unterzug - Stanträger	
Plan_P1 Positionsplan Ebene +1 161 Plan_P2 Positionsplan Ebene 0 162			
Plan_P2 Positionsplan Ebene 0 162			
Plan_P3 Positionsplan Ebene Stutzenraster 163	PI an_P3	Positionsplan Ebene Stützenraster	163

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite

Position

Teilproj.: 04.09.2015 Datum

Teilprojekt1

mb BauStatik S011 2013.101

Projekt

Seebrücke

3 Р1

Pos. P1

Schwalbenschwanzplatten

Trapezbl echkonstrukti onen

Vorgefertigte Trapezbleche, müssen aus Werken stammen, die einer Überwachung unterliegen.

Der zuständigen Bauaufsichtsbehörde ist weisen, dass ein Überwachungsvertrag besteht.

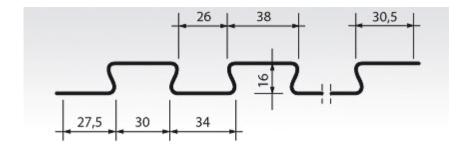
Verankerung der Konstruktionselemente

Die Ausbildung und Verankerung ist nach den sprechenden Vorschriften und Zulassungsbescheiden vorzusehen und nach der Wahl des Fabrikats von der Li eferfi rma nachzuwei sen.

Schwal benschwanzplatten

Decke über OG

Trägerabstand 1,50 m VerkehrsLast 2,50 kN/m2


Decke über EG

Trägerabstand 1,50 m Verkehrslast Terrasse 4,00 kN/m2

Verkehrslast Restaurant 3,75 kN/m2

davon für Leichte Trennwände

(Gipskarton Montagewand bei Wandgewicht 1,0 kN/qm²)

Proj.Bez Neubau einer Seebrücke mit Restaurant Seite Teilproj.: Teilprojekt1

04.09.2015 mb BauStatik S312.de 2013.101 Datum

Position Projekt

U1 Seebrücke

4

Stahträger - Auflager Schwalbenschwanzplatten Pos. U1

Durchl aufträger System

System z-Richtung M 1:45

В 1.50 1.50 5.45

Abmessungen Mat./Querschnitt

Feld	[m]	Lage [°]	Achsen	Materi al	Profil
KI	1. 50	0.0	fest	S 235	I PE 160
1	2.45	0.0	fest		
Kr	1 50	\cap	fast		

Aufl ager

Lager	Х	b	Art	$K_{T,z}$	$K_{R,N}$
	[m]	[cm]	[k	N/m	[kNm/rad]
A	1. 50	20. 0		fest	frei
В	3. 95	20. 0		fest	frei

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N Ständige Einwirkungen Kategorie A - Wohn- und

fw

Qk. W

Aufenthal tsräume Windlasten

LG 98

Qk. S

Qk.W (min/max Werte) Schnee- und Eislasten für Orte bis LG 99

 $NN + 1000 \, \text{m}$

(min/max Werte) Qk. S

Erläuterungen

Gruppen (LG)

Einwirkungen, die der gleichen Lastgruppe zugeordnet werden, können nicht gleichzeitig

auftreten.

feldweise (fw) Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.

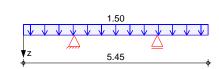
<u>Bel astungen</u>

Belastungen auf das System

Ei gengewi cht

Fel d Profil [cm2] IPE 160 kl-kr

Qk. N


<u>Grafik</u>

Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen

Gk 3.35

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 5 U1 Teilproj.: Teilprojekt1 Position 04.09.2015 mb BauStatik S312.de 2013.101 Projekt Seebrücke Datum

> Qk. S Qk. W 1.02 -0.52 1.50 5.45

Streckenl asten in z-Richtung

Einw. Gk

Einw. Qk. N Einw. Qk. W Einw. Qk. S

	Feld	Komm.	а	S	qri	q re	е
			[m]	[m]	[kN/m]	[kN/m]	[cm]
	ΚI	Ei gengew	0.00	5. 45		0. 16	0.0
(a)	ΚI	0 0	0.00	5.45		3.35	0.0
(b)	ΚI		0.00	5. 45		1. 50	0.0
(c)	ΚI		0.00	1. 50		-0.52	0.0
(d)	ΚI		0.00	5. 45		1. 02	0.0

(a)

aus Dachabdi chtung 0.14*1.5 0.21 kN/m aus Aufbau 0.07*24*1.5 2.52 kN/m 0. 06*1. 5 0. 35*1. 5 aus Trapezblech 0.09 kN/m 0. 53 3. 34 kN/m Unterkonstruktion kN/m

(b)

Nutzlast H für nicht begehbare Dächer. außer für übliche Erhal tungsmaßnahmen. Reparaturen

1.0*1.5 =1.50 kN/m

(c)

Unterwind Luv

GI ei chl asten

-0.52 =-0.52kN/m

kN/m

(d)

Schneel ast (mue 0.80) 0.85*0.8*1.5 =1.02

Schnittgrößen gemäß DIN EN 1990

Kombi nati onen Grundkombination Ed

SCIIII	ittgroben gemab b	TIN EN 1990
<u>Ek</u> 1	Σ (γ*ψ * EW (F	elder: 1,,n)) +1.05*Qk.N
1	1. 35*Gk	
	1 50*01 6	(1)
2	+1. 50*Qk. S	1 05 *OL N
2	1. 00*Gk	+1. 05*Qk. N
	+1.50*Qk.W	(3)
3	1. 00*Gk	
3 4	1. 35*Gk	+1.05*Qk.N
7	1. 55 GK	(1, 3)
	+1.50*0k.S	(110)
5	+1. 50*Qk. S 1. 00*Gk	+1.05*Qk.N
		(2)
	+1.50*Qk.W 1.00*Gk	. ,
6	1. 00*Gk	+1.50*Qk.N
		(3)
	+0. 90*Qk. W 1. 35*Gk	
7	1. 35*Gk	+1.50*Qk. N
	0.75*01.0	(1, 2)
8	+0. 75*Qk. S 1. 35*Gk	1 FO*OL N
ŏ	1. 35 GK	+1. 50*Qk. N
	10 75*0k S	(1, 3)
9	+0. 75*Qk. S 1. 00*Gk	+1.50*Qk.N
,	1. 00 GR	(2)
	+0.90*0k.W	(2)
10	+0. 90*Qk. W 1. 35*Gk	+1.50*Qk.N
		(2, 3)

Proj.Bez	Neubau einer S	eebrücke mit Restaurant		Seite	6
Teilproj.:	Teilprojekt1			Position	U1
Datum	04.09.2015	mb BauStatik S312.de	2013.101	Projekt	Seebrücke
	F۷	5 ("*" * FW	(Falalara 1	> >	

Ek		(Felder: 1, , n))
	+0.90*Qk.W	+0. 75*Qk. S
11	1. 00*Gk	+1.50*Qk.N
		(1)
12	1. 35*Gk	+1. 05*Qk. N
		(3)
	+1.50*Qk.S	• •
13	1. 35*Gk	

q-st. Komb. Ed, perm

Ekperm	Σ (γ *ψ *	EW (Felder: 1,,n))
14	1. 00*Gk	+0. 30*Qk. N
		(1, 3)
15	1. 00*Gk	+0. 30*Qk. N
		(2)
16	1. 00*Gk	• •

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

	Х	My, d, mi n	ĿΚ	My, d, max	ΕK	Vz,d,min	ΕK	V_{Z} , d, max	ĿΚ
	[m]	[KNm]		[KNm]		[kN]		[kN]	
Kragarm links	0.00	0.00	-	0.00	-	0. 00	-	0.00	_
_	1. 50	-8.81	1	-3.06	2	-11. 75	1	-4.08	2
Feld 1	0.00	-8. 81	4	-3.06	5	3. 04	6	10. 52	7
	1. 18	-4.60	8	0.64	9	-1.07	6	1. 42	7
	2. 45	-8.81	4	-3.94	9	-10.73	10	-3.26	11
Kragarm rechts	0.00	-8. 81	4	-3.94	3	5. 25	3	11. 75	4
•	1. 50	0.00	-	0.00	_	0.00	-	0.00	-

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

Nach	wei	S	E-E
Abs.	6.	2	

Nachweis der Biege- und Querkrafttragfähigkeit x Ek QS/ $M_{y,\,d}$ $V_{z,\,d}$ σ_d τ_d

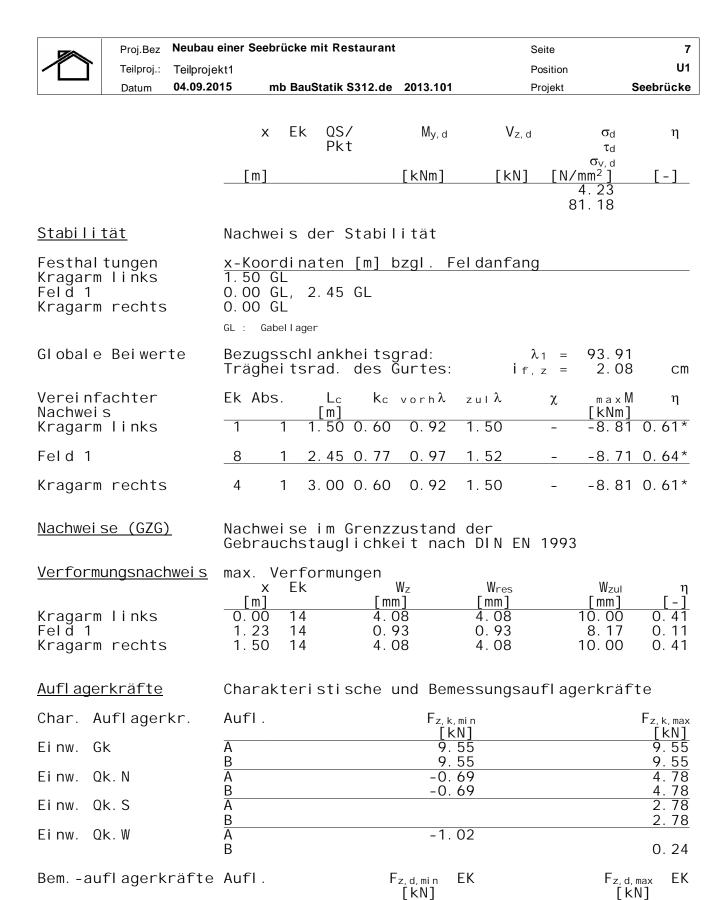
	[m]	[kNm]	[kN]		[-]
Kragarm links	(L = 1.50 m) 1.50 1 1/2	-8. 81	-11. 75	80. 85 4. 23 81. 18	0. 35
	(1 2 45)				

Feld 1

(L = 2)	. 45	m)				
0.00	1	1/2	-8.81	8. 39	80. 85 3. 02	0.34*
					81. 02	
1. 18	8	1/2	-4.60	0. 24	42. 16	0. 18
					0. 09	
					42. 16	
1. 23	8	1/2	-4.59	0. 00	42. 11	0. 18
					0. 00	
					42. 11	
2.45	12	1/2	-8. 81	-8.39	80. 85	0.34
					3. 02	
					81. 02	

Kragarm rechts

(L = 1.50 m)0.00 4 1/2


-8.81

11.75

80.85

0.35*

η

Komb. 2..11

A B 7. 29

8.51

2 11 22. 13 22. 35

10

Proj.BezNeubau einer Seebrücke mit RestaurantSeite8Teilproj.:Teilprojekt1PositionU1Datum04.09.2015mb BauStatik S312.de2013.101ProjektSeebrücke

Zusammenfassung	Zusammenfassung d	er Nachweise				
Nachweise (GZT)	Nachweise im Grenzzustand der Tragfähigkeit					
	Nachwei s	Feld	X [m]	η [-]		
	Nachweis E-E Stabilität	Kragarm links Feld 1	1.50 OK 1.50 OK	0. 35 0. 64		
Nachweise (GZG)	Nachweise im Gren	zzust. der Gebrau	chstaugl i cl	nkei t		
	Nachweis	Feld	x [m]	η Γ_1		
	Verformung	Kragarm rechts	1.50 OK	0.41		

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite

9 U1.1

Teilproj.: 04.09.2015 Datum

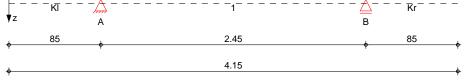
Teilprojekt1

mb BauStatik S312.de 2013.101

Position Projekt

Seebrücke

Pos. U1.1


Stahträger - Auflager Schwalbenschwanzplatten

System

Durchl aufträger

M 1:35

System z-Richtung

Abmessungen Mat./Querschnitt

Feld	[[m]	Lage [°]	Achsen	Materi al	Profil
KI	0.85	0.0	fest	S 235	I PE 160
1	2.45	0.0	fest		
Kr	0.85	0	fest		

Aufl ager

Lager	X	b	$Art K_{T, z}$	
J	[m]	[cm]	[kN/m]	[kNm/rad]
A	0.85	20. 0	fest	frei
В	3.30	20. 0	fest	frei

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N Ständige Einwirkungen Kategorie A - Wohn- und Aufenthal tsräume

fw LG 98

Qk. W

Windlasten Ok.W (min/max Werte) Schnee- und Eislasten für Orte bis

Qk. S NN + 1000 mQk. S (min/max Werte)

LG 99

Erläuterungen

Gruppen (LG)

Einwirkungen, die der gleichen Lastgruppe zugeordnet werden, können nicht gleichzeitig

auftreten.

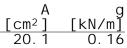
feldweise (fw)

Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.

Bel astungen

Belastungen auf das System

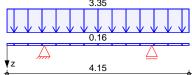

Ei gengewi cht

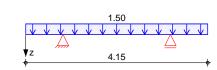
Fel d

kl-kr

Profil

IPE 160


<u>Grafik</u>


Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen

Gk

Qk. N

Proj.BezNeubau einer Seebrücke mit RestaurantSeite10Teilproj.:Teilprojekt1PositionU1.1Datum04.09.2015mb BauStatik S312.de2013.101ProjektSeebrücke

а

Qk. W Qk. S

-0.52

Vz 85

4.15

<u>Streckenlasten</u> in z-Richtung

Einw. Gk

(a)

(d)

Einw. Qk.N Einw. Qk.W Einw. Qk.S Gleichlasten Feld Komm.

		[m]	[m]	[kN/m]	[kN/m]	[cm]
KI	Ei gengew	0.00	4. 15		0. 16	0.0
_(a) KI	0 0	0.00	4. 15		3.35	0.0
(b) KI		0.00	4. 15		1. 50	0.0
(c) KI		0.00	0.85		-0.52	0.0
(d) KI		0.00	4. 15		1. 02	0.0

S

qы

Qre

е

0.14*1.5 0.21 kN/m aus Dachabdi chtung 0.07*24*1.5 aus Aufbau 2.52 kN/m 0.06*1.5 0.09 kN/m aus Trapezblech 0.35*1.5 Unterkonstruktion 0.53 kN/m 3.34 kN/m

(b) Nutzlast H für nicht begehbare Dächer. außer für übliche Erhaltungsmaßnahmen. Reparaturen

1.0*1.5 = 1.50 kN/m

(c) Unterwind Luv

-0.52 = -0.52 kN/m

Schneel ast (mue 0.80) 0.85*0.8*1.5 =

1.02 kN/m

<u>Kombi nati onen</u> Grundkombi nati on Ed Schnittgrößen gemäß DIN EN 1990

Ek	Σ (γ *ψ * EW	(Fel der: 1,, n)) +1.05*Qk.N
1	1. 35*Gk	+1.05*Qk.N
	1 50+01 6	(1)
	+1. 50*Qk. S	
2	1. 00*Gk	+1.50*Qk.W
2 3 4	1. 00*Gk 1. 00*Gk	
4	1. 35*Gk	+1.05*Qk.N
		(1, 3)
	+1.50*Qk.S	(1, 3)
5	1. 00*Gk	+1.05*Qk.N
		(2)
	+1.50*Qk.W	(-)
6	1. 00*Gk	+1.50*Qk. N
O	1.00 GR	(3)
	+0.90*Qk.W	(3)
_		1 05 ±01. N
7	1. 35*Gk	+1.05*Qk.N
		(1, 2)
	+1.50*Qk.S	
8	1. 00*Gk	+1.50*Qk.N
		(1, 3) +1. 50*Qk. N
9	1. 35*Gk	+1.50*0k.N
		(2)
	+0.90*Qk.W	+0.75*Qk. S +1.50*Qk. N
10	+0. 90*Qk. W 1. 35*Gk	+1.50*Qk.N
		(2, 3)
	+0.90*Qk.W	(2, 3) +0. 75*0k. S
11	1. 00*Gk	+1.50*Qk.N
		(1)
-		\ · · /

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 11 U1.1 Position Teilproj.: Teilprojekt1 04.09.2015 mb BauStatik S312.de 2013.101 Projekt Seebrücke Datum

Ek	$\Sigma (\gamma * \psi * EW)$	(Fel der: 1, , n))	
12	1. 00*Gk	+1.50*Qk.N	
		(2)	
	+0.90*Qk.W		
13	1. 35*Gk	+1.05*Qk.N	
		(2, 3)	
	+0.90*Qk.W	+1.50*Qk.S	
14	1. 35*Gk	+1.05*Qk.N	
		(3)	
	+1.50*Qk.S		
15	1. 00*Gk	+1.05*Qk.N	
		(3)	
	+1.50*Qk.W		

q-st. Komb. Ed, perm

Ekperm	Σ (γ *ψ *	EW (Felder: 1,,n))
16	1. 00*Gk	+0. 30*Qk. N
		(1, 3)
17	1. 00*Gk	+0. 30*Qk. N
		(2)
18	1. 00*Gk	

η

1 *

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

	x [m]	M _{y, d, min} [kNm]	Ek	M _{y, d, max} [kNm]	Ek	V _{z, d, mi n} [kN]	Ek	$V_{z, d, max}$ [kN]	Ek
Kragarm links -	0.00	0.00	_	0.00	_	0.00	_	0.00	_
-	0. 85	-2.83	1	-0. 98	2	-6.66	1	-2.31	2
Feld 1	0.00	-2.83	4	-0. 98	5	3.89	6	9.83	7
	1. 23	0. 55	8	3. 91	9	-0.40	6	0.33	11
	2.45	-2.83	4	-1.27	12	-9.90	13	-3.96	11
Kragarm rechts	0.00	-2.83	4	-1.27	2	2. 98	2	6.66	4
_	0.85	0.00	-	0.00	-	0.00	-	0.00	-

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

Nachweis E-E Abs. 6.2

Nachweis der Biege- und Querkrafttragfähigkeit x Ek QS/ $M_{y,d}$ $V_{z,d}$ σ_{d} Pkt τ_{d}

	[m]	[kNm]	[kN]	$\sigma_{V,d}$ [N/mm 2]	[-]
Kragarm links	(L = 0.85 m) $0.85 1 1/2$	-2.83	-6. 66	25. 96 2. 40 26. 29	0. 1
Feld 1	(L = 2.45 m)				

(L = 2	. 45	m)				
0.00		1/3	-2.83	9. 83	20. 71	0. 12
					11. 72 29. 00	
1. 22	9	1/2	3. 91	-0.04	<u> </u>	0. 15*
1. 22	,	17 2	3. 71	0.01	0. 01	0. 10
					35. 87	
1. 23	9	1/2	3. 91	-0.07	35. 87	0. 15
					0. 02	
					35. 87	
2.45	13	1/3	-2.83	-9. 90	20. 71	0. 12

Proj.Bez Neubau	einer Seebrücke mit Restaurant	Seite	12
Teilproj.: Teilproje		Position	U1.1
Datum 04.09.20	015 mb BauStatik S312.de 2013.101	Projekt	Seebrücke
	x Ek QS/ M _{y,d} Pkt	$\begin{matrix} V_{z,d} & \sigma_d \\ \tau_d \end{matrix}$	η
	[m] [kNm]	$\sigma_{V,d}$ [KN] [N/mm 2]	[-]
		11. 80 29. 10	
Kragarm rechts	(L = 0.85 m) 0.00 4 1/2 -2.83	6. 66 25. 96 2. 40 26. 29	0. 11*
<u>Stabilität</u>	Nachweis der Stabilität		
Festhaltungen Kragarm links Feld 1 Kragarm rechts	x-Koordinaten [m] bzgl. Fel 0.85 GL 0.00 GL, 2.45 GL 0.00 GL GL: Gabellager	danfang	
Globale Beiwerte	Bezugsschlankhei tsgrad: Träghei tsrad. des Gurtes:	$\lambda_1 = 93.9$ if, z = 2.0	
Verei nfachter Nachwei s	Ek Abs. Lc kc vorh 2 [m]	zuιλ χ max [KNm	
Kragarm links		4. 672. 8	3 0.11*
Feld 1	9 1 2.45 0.92 1.15	3. 38 - 3. 9	1 0.34*
Kragarm rechts	4 1 1.70 0.59 0.52	4. 672. 8	3 0.11*
Nachweise (GZG)	Nachweise im Grenzzustand Gebrauchstauglichkeit nach		
<u>Verformungsnachweis</u>	max. Verformungen x Ek Wz	Wres Wzul	n
Kragarm links	X EK Wz [m] [mm] 0.00 17 0.28	[mm] [mm] 0.28 5.67	[-]
Feld 1 Kragarm rechts	1. 23 17 0. 50 0. 85 17 0. 28	0. 50 8. 17 0. 28 5. 67	0.06
Krayarıı recirts	0. 65 17 0. 26	0. 20 3. 07	0.03
<u>Aufl agerkräfte</u>	Charakteristische und Bemes	ssungsaufl agerkrä	fte
Char. Auflagerkr.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$F_{z, k, max}$ [kN]
Einw. Gk	Ā 7. 2	7	7. 27 7. 27
Einw. Qk.N	A -0.22	2	3. 33
Einw. Qk.S	B -0.22	<u>Z</u>	2. 12
Einw. Qk.W	B -0.52	2	2. 12 0. 08
Bemauflagerkräfte		ζ F-	d, max EK
Komb. 715	[kN] A 6. 26 1!	Ĺ	kN] . 49 7
	B 6. 94 1		. 56 13

 Proj.Bez
 Neubau einer Seebrücke mit Restaurant
 Seite
 13

 Teilproj.:
 Teilprojekt1
 Position
 U1.1

 Datum
 04.09.2015
 mb BauStatik S312.de
 2013.101
 Projekt
 Seebrücke

Zusammenfassung	Zusammenfassung der Nachweise					
Nachweise (GZT)	Nachweise im Grenzzustand der Tragfähigkeit					
	Nachwei s	Fel d	χ [m]	η [-]		
	Nachweis E-E Stabilität	Feld 1 Feld 1		0K 0.15		
Nachweise (GZG)	Nachweise im Gren					
	Nachwei s	Feld	X [m]	η		
	Verformung	Feld 1	[m] 1.23 C	K 0.06		

Proj.Bez Neubau einer Seebrücke mit Restaurant Seite Teilproj.: Teilprojekt1

04.09.2015 mb BauStatik S312.de 2013.101 Datum

Position Projekt

U2 Seebrücke

14

Stahträger - Auflager Schwalbenschwanzplatten Pos. U2

System

Durchl aufträger

M 1:50

System z-Richtung

Abmessungen

▼z A		<u></u> - B	_ Kr
1.00	3.80	•	1.00
ф	5.80		•

Mat./Querschnitt

Feld	[[m]	Lage	Achsen	Materi al	Profil
	[m]				
ΚI	1. 00	0.0	fest	S 235	I PE 160
1	3.80	0.0	fest		
Kr	1.00	0.0	fest		

Aufl ager

Lager	Χ	b	Art	$K_{T,z}$	$K_{R,N}$
J	[m]	[cm]		[kN/m]	[kNm/rad]
A	1.00	20.0		fest	frei
В	4.80	20. 0		fest	frei

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N Ständige Einwirkungen Kategorie A - Wohn- und

fw

Qk. W

Aufenthal tsräume Windlasten

LG 98

LG 99

Qk. S

Qk.W (min/max Werte) Schnee- und Eislasten für Orte bis

 $NN + 1000 \, \text{m}$

(min/max Werte) Qk. S

Erläuterungen

Gruppen (LG)

Einwirkungen, die der gleichen Lastgruppe zugeordnet werden, können nicht gleichzeitig

auftreten.

Gk

feldweise (fw) Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.

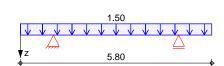
<u>Bel astungen</u>

Belastungen auf das System

Ei gengewi cht

Fel d Profil [cm2] IPE 160 kl-kr

Qk. N


<u>Grafik</u>

Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen

3.35 0.16

5.80

Proj.BezNeubau einer Seebrücke mit RestaurantSeite15Teilproj.:Teilprojekt1PositionU2Datum04.09.2015mb BauStatik S312.de2013.101ProjektSeebrücke

Qk. W Qk. S

-0.52

VZ1.00

S 5.80

<u>Streckenlasten</u> in z-Richtung

Einw. Gk

Einw. Qk. N Einw. Qk. W Einw. Qk. S

Feld	Komm.	а	S	qı i	q re	е
		[m]	[m]	[kN/m]	[kN/m]	[cm]
ΚI	Ei gengew	0.00	5. 80		0. 16	0.0
ΚI	0 0	0.00	5.80		3.35	0.0
ΚI		0.00	5. 80		1. 50	0.0
ΚI		0.00	1. 00		-0.52	0.0
ΚI		0.00	5. 80		1. 02	0.0

(a)

aus Dachabdi chtung 0.14*1.5 0.21 kN/m aus Aufbau 0.07*24*1.5 2.52 kN/m 0. 06*1. 5 0. 35*1. 5 aus Trapezblech 0.09 kN/m 0. 53 3. 34 kN/m Unterkonstruktion kN/m

(b)

Nutzlast H für nicht begehbare Dächer. außer für übliche

Erhal tungsmaßnahmen. Reparaturen

1.0*1.5 = 1.50 kN/m

(c)

Unterwind Luv

Gleichlasten

(a)

(b)

(c)

(d)

-0.52 = -0.52 kN/m

(d)

Schneel ast (mue 0.80) 0.85*0.8*1.5 = 1.0

1.02 kN/m

<u>Kombinationen</u> Grundkombination Ed

Schnittgrößen gemäß DIN EN 1990

Ek	Σ (γ *ψ * EW	(Fel der: 1,,n)) +1.05*Qk.N
1	1. 35*Gk	
		(1)
	+1. 50*Qk. S	
2	1. 00*Gk	+1.50*Qk.W
2 3 4	1. 00*Gk	
4	1. 35*Gk	+1.05*Qk.N
		(1, 3)
	+1. 50*Qk. S 1. 00*Gk	
5	1. 00*Gk	+1.05*Qk.N
		(2)
	+1.50*Qk.W 1.00*Gk	
6	1. 00*Gk	+1.50*Qk.N
		(3)
	+0.90*Qk.W	
7	1. 35*Gk	+1.05*Qk.N
		(1, 2)
	+1. 50*Qk. S 1. 00*Gk	
8	1. 00*Gk	+1.50*Qk.N
		(1, 3) +1.50*Qk. N
9	1. 35*Gk	
		(2)
	+0. 90*Qk. W 1. 35*Gk	+0. 75*0k. S +1. 50*0k. N
10	1. 35*Gk	+1.50*Qk.N
		(1, 2)
	+0. 75*Qk. S 1. 00*Gk	• • •
11	1. 00*Gk	+1.50*Qk.N
		(2)
		• •

Proj.BezNeubau einer Seebrücke mit RestaurantSeite16Teilproj.:Teilprojekt1PositionU2Datum04.09.2015mb BauStatik S312.de2013.101ProjektSeebrücke

q-st. Komb. Ed, perm

Ekperm	Σ (γ *ψ *	EW (Felder: 1,,n)) +0.30*0k N
17	1. 00*Gk	+0.30*Qk.N
		(1, 3)
18	1. 00*Gk	+0. 30*Qk. N
		(2)
19	1. 00*Gk	· ·

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

	X [m]	My, d, min [kNm]	Ek	M _{y, d, max} [kNm]	Ek V	/ _{z, d, mi n} [kN]	Ek	V _{z, d, ma}	
Kragarm links	0. 00 1. 00	0. 00 -3. 92	- 1	0. 00 -1. 36	- 2 -	0. 00 -7. 83	- 1	0.0 -2.7	
Feld 1	0.00	-3. 92	4	-1.36	5	6.30		15.0	9 7
	1. 90 3. 80	3. 45 -3. 92		11. 35 -1. 75		-0. 36 15. 15	6 12	0.3 -6.3	
Kragarm rechts	0.00	-3. 92	4	-1.75	2	3.50	2	7.8	3 4
	1. 00	0. 00	-	0. 00	-	0.00	-	0.0	0 –
Nachweise (GZT)	Nachwei DIN EN		Grenz	zustand	der 7	Γragf	ähi gk	eit n	ach
Nachweis E-E				e- und Q			agfäh	i gkei	t
Abs. 6.2	Х	Ek QS Pk		My, d	,	$V_{z, d}$		$\sigma_{\sf d}$	η
								-	
				5 L NL 3				v, d	
	[m]			[kNm]	[]	<n]< td=""><td>σ [N/mm]</td><td></td><td>[-]</td></n]<>	σ [N/mm]		[-]
Kragarm links	(L = 1.		2		_	_	[N/mm	2]	
Kragarm links		00 m) 1 1/	2	[kNm] -3.92	_	<n] 83</n] 	[N/mm 35. 2.	93 82	[-] 0. 15*
Kragarm links	(L = 1.		2		_	_	[N/mm 35.	93 82	
Kragarm links Feld 1	(L = 1. 1.00	1 1/ 80 m)		-3. 92	- 7 .	83	35. 2. 36.	93 82 27	0. 15*
-	(L = 1. 1.00	1 1/			- 7 .	_	35. 2. 36.	93 82 27	
-	(L = 1. 1.00 (L = 3. 0.00	1 1/ 80 m) 7 1/	3	-3. 92	-7. 15.	83	35. 2. 36. 28. 18. 42.	93 82 27 67 00 35	0. 15*
-	(L = 1. 1.00	1 1/ 80 m)	3	-3. 92	-7. 15.	83	35. 2. 36. 28. 18. 42.	93 82 27 67 00 35	0. 15*
-	(L = 1. 1.00 (L = 3. 0.00	1 1/ 80 m) 7 1/	3	-3. 92	-7. 15.	83 09 06	35. 2. 36. 28. 18. 42.	93 82 27 67 00 35 11 02 11	0. 15*

Proj.Bez Neubau	einer Seebrücke n	nit Restaurar	nt		Seite		17
Teilproj.: Teilproje	kt1				Position		U2
Datum 04.09.20	015 mb BauS	statik S312.de	e 2013.101		Projekt		Seebrücke
	x Ek	QS/ Pkt	My, d	$V_{z,c}$	d	σ_{d} $ au_{d}$	η
	[m]		[kNm]	[kN]		$\frac{\sigma_{V,d}}{mm^2}$	[-]
Kragarm rechts	(L = 1.00 0.00 4	m) 1/2	-3. 92	7. 83	3	35. 93 2. 82 36. 27	0. 15*
<u>Stabilität</u>	Nachweis d	er Stabi	lität				
Festhaltungen Kragarm links Feld 1 Kragarm rechts	x-Koordi na 1.00 GL 0.00 GL, 3 0.00 GL	. 80 GL	bzgl. Fe	el danfan	ıg		
Globale Beiwerte	Angri ffspu Teilsicher				$Z_p = \gamma_{m, 1} =$	-8.00 1.10	
Zwi schenwerte	x Ek [m]	KL _y Γ - 1	N _{cr} [kN] [c	C ² :m ²] [C ₁	M _{cr} [kNm]	λ _{LT}
Kragarm links	(Abschnitt 1.00 1	1: L _{cr}	= 2.00 m 353.90	1)	83	58. 72	0. 70
Feld 1	(Abschnitt 1.90 9	2: L _{cr} KL b	= 3.80 m 98.03		16	17. 65	1. 28
Kragarm rechts	(Abschnitt 0.00 4		= 2.00 m 353.90		83	58. 72	0. 70
Nachwei s	x Ek [m]	M _{y,d} [kNm]	M _{pl,y,d} [kNm]	χ∟⊤ [-]	f [-]	χLTmod [-]	η Γ _ 1
Kragarm links	(Abschnitt 1.00 1			1)	0.80	1. 00	0. 15*
Feld 1	(Abschnitt 1.90 9	2: L _{cr} 11.35	= 3.80 m 26.45		0. 98	0. 54	0. 79*
Kragarm rechts	(Abschnitt 0.00 4	3: L _{cr} -3.92	= 2.00 m 26.45	0. 87	0. 80	1. 00	0. 15*

Nachweise (GZG)
Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1993

<u>Verformungsnachweis</u> max. Verformungen

	X	EK	W_{Z}	Wres	W_{zul}	η
	[m]		[mm]	[mm]	[mm]	[-]
Kragarm links Feld 1	0.00	18	2. 89	2. 89	6. 67	0.43
Felď 1	1. 90	18	4. 15	4. 15	12. 67	0.33
Kragarm rechts	1.00	18	2.89	2.89	6. 67	0.43

<u>Auflagerkräfte</u> Charakteristische und Bemessungsauflagerkräfte

Proj.Bez	Neubau einer	Seebrücke mit Restaurant		Seite	18
Teilproj.:	Teilprojekt1			Position	U2
Datum	04.09.2015	mb BauStatik S312.de	2013.101	Projekt	Seebrücke
u£l agar		1			

Char.	Auflagerkr.	Aufl.		k, mi n		F:	z, k, max
Ei nw.	Gk	Ā	10	kN] . 16			[kN] 0.16
Ei nw.	Qk. N	B A	-0	. 16 . 20			0. 16 4. 55
Ei nw.	Qk. S	B A	-0	. 20			4. 55 2. 96
Ei nw.		B A	-0	. 59			2. 96
LI IIW.	ZR. W	В	Ü	. 07			0. 07
Bema	aufl agerkräfte	Aufl.	F _{z, d, min} [kN]	EK		F _{z, d, max}	« EK
Komb.	7 16	Ā B	9. 07 9. 86	16 13		22. 93 22. 99	
		D	7. 00	13		22. //	12
Zusamn	<u>nenfassung</u>	Zusammenfassung d	er Nach	weise			
Nachwe	eise (GZT)	Nachweise im Gren	zzustan	d der Trag	fähi gke	ei t	
		Nachwei s	Feld		X		η
		Nachweis E-E Stabilität	Feld 1 Feld 1		[m] 1.90 1.90	OK OK	0. 44 0. 79

Nachweise (GZG)	Nachweise im	Grenzzust. d	er Gebra	auchstaugl	i chk	kei t
	Nachwei s	Feld		X [m]		r Γ_1
	Verformung	Kragarm	rechts	1. 00	OK	0.43

Aufl ager

Proj.Bez Neubau einer Seebrücke mit Restaurant Seite Teilproj.: Teilprojekt1

04.09.2015 mb BauStatik S312.de 2013.101 Datum

Position Projekt

U3 Seebrücke

Profil

19

Unterzug - Stahträger Pos. U3

Durchl aufträger System

System z-Richtung M 1:40

В 2.40 4.80

Achsen

Lage

Abmessungen Fel d Mat./Querschnitt [m]1-2

fest S 235 HEB 140 $K_{T,z}$ $K_{R,\underline{y}}$ Lager Art Χ h

Materi al

[m][kN/m] [kNm/rad][cm] Ā 0.00 20.0 fest frei В 2.40 20.0 fest frei C 20.0 4.80 fest frei

Einwirkungen nach DIN EN 1990: 2010-12 Ei nwi rkungen

Ständige Einwirkungen Gk Qk. N

Kategorie A - Wohn- und fw

Aufenthal tsräume Windlasten Qk. W

LG 98 Qk. W (min/max Werte)

Qk. S Schnee- und Eislasten für Orte bis $NN + 1000 \, \text{m}$

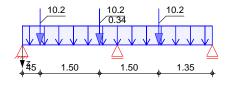
Qk. S (min/max Werte)

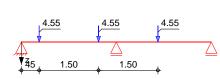
Erläuterungen Gruppen (LG)

Einwirkungen, die der gleichen Lastgruppe zugeordnet werden, können nicht gleichzeitig

auftreten.

feldweise (fw) Die Lasten der Einwirkung werden als feldweise


wirkend aufgeteilt.


Bel astungen Belastungen auf das System

Ei gengewi cht Fel d Profi I 1-2 **HEB 140**

<u>Grafik</u> Belastungsgrafiken (Einwirkungsbezogen)

Gk Ei nwi rkungen Qk. N

LG 99

Proj.BezNeubau einer Seebrücke mit RestaurantSeite20Teilproj.:Teilprojekt1PositionU3Datum04.09.2015mb BauStatik S312.de2013.101ProjektSeebrücke

Qk. W Qk. S

-0.59 -0.59 2.96 2.96

\$\frac{2.96}{45}\$ 1.50 1.50

\text{1.50}

<u>Streckenlasten</u> in z-Richtung Einw. Gk

Fel d	Komm.	а	S	qı i	q re	е
		[m]	[m]	[kN/mˈ]	[kN/mˈ]	[cm]
1	Ei gengew	0.00	4.80		0.34	0.0

<u>Punktlasten</u> in z-Richtung

Einw. Gk Einw. Qk. N

Einw. Qk.W Einw. Qk.S

(a)

Einzellasten Feld Komm. [kN] [m][cm] 0.45 10. 16 0.0 1.95 10.16 0.0 1 3.45 10.16 0.0 1 4.55 0.0 1 0.45 1.95 0.0 4.55 3.45 0.0 4.55 -0.59 0.45 0.0 1 1.95 -0.59 0.0 1 3. 45 -0.59 0.0 2. 96 2. 96 2. 96 0.45 1 0.0 1 1.95 0.0 1 3.45 0.0

aus Pos. 'U2', Lager 'A' (Seite 18)

<u>Kombinationen</u> Grundkombination Ed Schnittgrößen gemäß DIN EN 1990

Ek	Σ (γ *ψ * EW	(Felder: 1,,n)) +1.05*Qk.N
1	1. 00*Gk	
		(2)
	+1.50*Qk.W	
2	1. 35*Gk	+1.50*Qk.N
		(1)
	+0. 75*Qk. S	
3	1. 00*Gk	
4	1. 35*Gk	+1.05*Qk.N
		(1, 2)
	+1.50*Qk.S	
5	1. 00*Gk	+1.50*Qk.N
		(2)
	+0.90*Qk.W	
6	1. 00*Gk	+1.50*Qk.W
7	1. 00*Gk	+1.50*Qk.N
		(1)
	+0.90*Qk.W	
8	1. 35*Gk	+1.50*Qk.N
		(2)
	+0. 75*Qk. S	
9	1. 35*Gk	+1.05*Qk.N
		(2)
	+1.50*Qk.S	

q-st. Komb. Ed, perm

Ekperm	Σ (γ *ψ *	EW (Felder: 1,,n))
10	1. 00*Gk	
11	1. 00*Gk	+0.30*Qk.N
		(1)

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite Teilproj.: Teilprojekt1

Datum 04.09.2015 mb BauStatik S312.de 2013.101 Position Projekt

U3 Seebrücke

η

21

(Felder: 1,..,n)) +0.30*Qk.N (2)

Bem. -schni ttgrößen Bemessungsschni ttgrößen

<u>Tabel I e</u> Schnittgrößen (Umhüllende)

X	My, d, min	ŁΚ	My, d, max	ŁΚ	V_{Z} , d, min	ŁΚ	$V_{z,d,max}$	ŁΚ
[m]	[kNm]		[KNm]		[kN]		[kN]	
0.00	0.00	_	0.00	_	7. 17	1	19.03	2
0. 45	3. 19	1	8. 52	2	7. 02	1	18. 83	2
0. 45	3. 19	1	8. 52	2	-4.62	4	-1.80	6
1. 95	-0. 95	5	2. 12	2	-5.30	4	-2.31	6
1. 95	-0. 95	5	2. 12	2	-28.23	4	-11.58	6
2.40	-11. 90	4	-4.93	6	-28.43	4	-11.73	6
0.00	-11. 90	4	-4. 93	6	7. 68	6	18.40	4
1. 05	2.00	7	8. 17	8	7.32	6	17. 92	4
1. 05	2.00	7	8. 17	8	-5.74	8	-1. 26	7
2.40	0.00	-	0.00	-	-6.36	8	-1.71	7
	[m] 0.00 0.45 0.45 1.95 1.95 2.40 0.00 1.05 1.05	[m] [kNm] 0.00 0.00 0.45 3.19 0.45 3.19 1.95 -0.95 1.95 -0.95 2.40 -11.90 0.00 -11.90 1.05 2.00 1.05 2.00	[m] [kNm] 0.00 0.00 - 0.45 3.19 1 0.45 3.19 1 1.95 -0.95 5 1.95 -0.95 5 2.40 -11.90 4 0.00 -11.90 4 1.05 2.00 7 1.05 2.00 7	[m] [kNm] [kNm] 0.00 0.00 - 0.00 0.45 3.19 1 8.52 0.45 3.19 1 8.52 1.95 -0.95 5 2.12 1.95 -0.95 5 2.12 2.40 -11.90 4 -4.93 0.00 -11.90 4 -4.93 1.05 2.00 7 8.17 1.05 2.00 7 8.17	[m] [kNm] [kNm] 0.00 0.00 - 0.00 - 0.45 3.19 1 8.52 2 0.45 3.19 1 8.52 2 1.95 -0.95 5 2.12 2 1.95 -0.95 5 2.12 2 2.40 -11.90 4 -4.93 6 0.00 -11.90 4 -4.93 6 1.05 2.00 7 8.17 8 1.05 2.00 7 8.17 8	[m] [kNm] [kNm] [kN] 0.00 0.00 - 0.00 - 7.17 0.45 3.19 1 8.52 2 7.02 0.45 3.19 1 8.52 2 -4.62 1.95 -0.95 5 2.12 2 -5.30 1.95 -0.95 5 2.12 2 -28.23 2.40 -11.90 4 -4.93 6 -28.43 0.00 -11.90 4 -4.93 6 7.68 1.05 2.00 7 8.17 8 7.32 1.05 2.00 7 8.17 8 -5.74	[m] [kNm] [kN] 0.00 0.00 - 0.00 - 7.17 1 0.45 3.19 1 8.52 2 7.02 1 0.45 3.19 1 8.52 2 -4.62 4 1.95 -0.95 5 2.12 2 -5.30 4 1.95 -0.95 5 2.12 2 -28.23 4 2.40 -11.90 4 -4.93 6 -28.43 4 0.00 -11.90 4 -4.93 6 7.68 6 1.05 2.00 7 8.17 8 7.32 6 1.05 2.00 7 8.17 8 -5.74 8	[m] [kNm] [kN] [kN] 0.00 0.00 - 0.00 - 7.17 1 19.03 0.45 3.19 1 8.52 2 7.02 1 18.83 0.45 3.19 1 8.52 2 -4.62 4 -1.80 1.95 -0.95 5 2.12 2 -5.30 4 -2.31 1.95 -0.95 5 2.12 2 -28.23 4 -11.58 2.40 -11.90 4 -4.93 6 -28.43 4 -11.73 0.00 -11.90 4 -4.93 6 7.68 6 18.40 1.05 2.00 7 8.17 8 7.32 6 17.92 1.05 2.00 7 8.17 8 -5.74 8 -1.26

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

Nachweis E-E Nachweis der Biege- und Querkrafttragfähigkeit Abs. 6.2 x Ek QS/ $V_{z,d}$ $M_{y,d}$ Pkt τ_{d} $\sigma_{v,\,d}$ [m] [kNm] [kN] $[N/mm^2]$ Feld 1

(L = 2.	40	m)				
`0. 00	2		0.00	19. 03	0.00	0. 16
					22. 15	
					38. 36	
0. 45	2	1/2	8. 52	18. 83	25. 95	0. 19
					20. 59	
					44. 10	
0. 99	2	1/3	6. 31	-4.17	29. 22	0. 12
					1. 24	
					29. 30	
1. 95	4	1/1	0.84	-28. 23	0.00	0. 24
					32.85	
					56.89	
2 40		1 / 2	11 00	20 42	2/ 2/	0 20*

Feld 2	(L = 2.40 m)				
	2.40 4 1/2	-11. 90	-28. 43	56. 89 36. 26 31. 09 64. 93	0. 28

(L = 2.	40	m)				
0.00	4	1/3	-11. 90	18. 40	55. 11 5. 46	0. 24*
					55. 92	
0. 13	4	1/3	-9. 60	18. 35	44. 46	0. 19
					5.44	
					45. 45	
1. 05	9	1/2	7. 90	17. 38	24. 08	0. 17
					19. 00	
					40. 78	
1. 29	8	1/3	6.80	-5.85	31. 49	0. 13
					1. 74	
					31. 63	
2.40	8	1/1	0.00	-6. 36	0.00	0. 05
					7.40	

X	Ek	QS/ Pkt	$M_{y,d}$	$V_{z,\;d}$	$\sigma_{\sf d}$	η
[m]			[kNm]	[kN]	σ _{V,d} [N/mm ²] 12.81	[-]

	Stabilität	Nachwei s	der	Stabilitä
--	------------	-----------	-----	-----------

Ek Abs.

eld 2 U. UU GL, 2.4 GL: Gabellager

Globale Beiwerte Bez

Bezugsschlankheitsgrad: Trägheitsrad. des Gurtes: if

 $\lambda_1 = 93.91$ $i_{f,z} = 3.80$

χ

CM

η

Vereinfachter Nachweis Feld 1

Feld 2

Fel d Fel d 4 1 2.40 0.66 0.44 2.21 4 1 2.40 0.64 0.43 2.21

Lc

[m]

- -11.90 0.20*

-11. 90 0. 20*

maxM

[kNm]

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1993

 k_c $vorh\lambda$

zuΙλ

<u>Verformungsnachweis</u>

max. Verformungen x Fk

	X	ŁΚ	W_Z	Wres	W_{Zul}	η
	[m]		[mm]	[mm]	[mm]	[-]
1	0. 99	11	0. 53	0. 53	8. 00	0. 07
2	1. 29	12	0.43	0.43	8. 00	0.05

<u>Auflagerkräfte</u>

Charakteristische und Bemessungsauflagerkräfte

Char.	Aufl agerkr.	Aufl.	F _{z, k, min} 「kN]	F _{z, k, max} [kN]
Ei nw.	Gk	A B	8. 32 21. 16	8. 32 21. 16
		C	2. 61	2.61
Ei nw.	Qk. N	A B	-0.44	4. 03 9. 02
		C	-0. 52	1. 55
Ei nw.	Qk. S	A B		2. 34 5. 87
Ei nw.	Qk. W	C A	-0.46	0. 67
LI IIVV.	QK. W	В	-1. 17	
		С	-0.13	

Bemauflagerkräfte	Aufl.	F _{z, d, mi n}	ΕK	F _{z, d, max}	EK
		[kN]		[kN]	
Komb. 18	A	7. 17	1	19. 03	2
	В	19. 41	6	46.83	4
	С	1. 71	7	6.36	8

 Proj. Bez
 Neubau einer Seebrücke mit Restaurant
 Seite
 23

 Teilproj.:
 Teilprojekt1
 Position
 U3

 Datum
 04.09.2015
 mb BauStatik S312.de
 2013.101
 Projekt
 Seebrücke

Zusammenfassung	Zusammenfassung d	er Nachweise		
Nachweise (GZT)	Nachweise im Gren	zzustand der Trag	fähi gkei	i t
	Nachwei s	Feld	X [m]	r [-]
	Nachweis E-E Stabilität	Feld 1 Feld 1	2. 40 2. 40	OK 0. 28 OK 0. 20
Nachweise (GZG)	Nachweise im Gren	zzust. der Gebrau	chstaug	lichkeit
	Nachwei s	Feld	X [m]	r Γ _ 7
	Verformung	Feld 1	0. 99	OK 0.07

Proj.Bez Neubau einer Seebrücke mit Restaurant Seite

Teilproj.: Teilprojekt1
Datum **04.09.2015**

mb BauStatik S312.de 2013.101

Position U4
Projekt Seebrücke

24 U4

Unterzug - Stahlträger Pos. U4 Durchl aufträger System System z-Richtung M 1:40 Kr В 4.35 Abmessungen Fel d Achsen Materi al Profil Lage Mat./Querschnitt [m]2.85 0.0 fest S 235 HEB 140 1.50 Kr 0.0 fest $K_{T, z}$ $K_{R,\;y}$ Aufl ager Lager Art Х b [m] [cm] [kN/m] [kNm/rad] 0.00 20.0 fest frei В 2.85 20.0 fest frei Einwirkungen nach DIN EN 1990: 2010-12 Ei nwi rkungen Ständige Einwirkungen Gk Qk. N Kategorie A - Wohn- und fw <u>Aufenthalt</u>sräume Windlasten Qk. W LG 98 Qk. W (min/max Werte) Qk. S Schnee- und Eislasten für Orte bis LG 99 $NN + 1000 \, \text{m}$ Qk. S (min/max Werte) Erläuterungen Gruppen (LG) Einwirkungen, die der gleichen Lastgruppe zugeordnet werden, können nicht gleichzeitig auftreten. feldweise (fw) Die Lasten der Einwirkung werden als feldweise wirkend aufgeteilt. Bel astungen Belastungen auf das System Ei gengewi cht Fel d Profi I 1-kr **HEB 140** <u>Grafik</u> Belastungsgrafiken (Einwirkungsbezogen) Gk Qk. N Ei nwi rkungen

1.50

1.50

1.15

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite Teilproj.: Teilprojekt1

04.09.2015 mb BauStatik S312.de 2013.101 Datum

Position Projekt

U4 Seebrücke

25

Qk. W Qk. S -0.52 -1.02 2.78 -1.02 -0.52 2.78 2.12 2.12 1.50 1.50 1.50 1.50

<u>Streckenlasten</u> in z-Richtung Einw. Gk

Fel d	Komm.	а	S	qı i	q re	е
		[m]	[m]	[kN/m]	[kN/m]	[cm]
1	Ei gengew	0.00	4. 35		0.34	0.0

Punktl asten in z-Richtung

Einw. Gk

Einw. Qk. N

Einw. Qk. W

Einw. Qk. S

	1	Ei gengew	0.00	4. 35	C). 34	0.0
		ellasten Komm.	а			F _z	e
	1 01 0	KOIIIII.	[m]		[kN]	[cm]
(a)	1		0. 20		9	7. 55	0.0
(a)	1		1. 70		9). 55	0.0
(b)	Kr		1. 50		7	'. 27	0.0
(b)	1		3. 20		7	. 27	0.0

3.20 (b) 0.20 (a) 1.70 1 (a) $_{(b)}$ Kr 1.50 3.20 (b) 0.20 1 (a) 1.70 1 (a) 1. 50 3. 20 0. 20 1. 70 (b) Kr (b) 1 (a) 1 (a) (b) Kr (b)

4. 78 0.0 4.78 0.0 3.33 0.0 3.33 0.0 -1.02 0.0 -1.02 0.0 -0.52 0.0 -0.52 0.0 2. 78 2. 78 0.0 0.0 2. 12 2. 12 1.50 3.20 0.0 0.0

(a)

(b)

aus Pos. 'U1.1', Lager 'A' (Seite 12)

aus Pos. 'U1', Lager 'A' (Seite 7)

Kombi nati onen

Grundkombination Ed

Schnittgrößen gemäß DIN EN 1990

Ek	Σ ($\gamma * \psi * EW$	(Felder: 1,,n)) +1.50*Qk.N
1	1. 00*Gk	
		(2)
	+0.90*Qk.W	
2	1. 35*Gk	+1.50*Qk. N
		(1)
	+0. 75*Qk. S	
3 4	1. 00*Gk	
4	1. 35*Gk	+1.50*Qk.N
		(2)
	+0. 90*Qk. W	+0. 75*Qk. S
5	1. 00*Gk	+1.50*Qk. N
		(1)
6	1. 35*Gk	+1.05*Qk.N
		(1, 2)
	+1. 50*Qk. S	
7	1. 35*Gk	+1.50*Qk. N
		(2)
	+0. 75*Qk. S 1. 00*Gk	
8	1. 00*GK	+1.50*Qk. N
		(1)
	+0. 90*Qk. W	4 F0+01 W
9	1. 00*Gk	+1.50*Qk.W
10	1. 35*Gk	+1.05*Qk.N

Proj.Bez

Neubau einer Seebrücke mit Restaurant

Seite

Teilproj.: Teilprojekt1

Position

Datum 04.09.2015 mb BauStatik S312.de 2013.101

Position Projekt U4 Seebrücke

η

26

q-st. Komb. Ed, perm

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

+1.50*Qk.W

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

	X	$M_{y,d,min}$	Ek	$M_{y, d, max}$	Ek	$V_{z,d,min}$	Ek	$V_{z,d,max}$	Ek
	[m]	[KNm]		[kNm]		[kN]		[kN]	
Feld 1	0.00	0.00	_	0.00	_	4. 19	1	22.58	2
	0. 20	0.83	1	4. 51	2	4. 12	1	22.49	2
	0. 20	0.83	1	4. 51	2	-5. 28	4	1. 13	5
	1. 70	-6.67	4	4. 89	5	-5. 96	4	0.63	5
	1. 70	-6.67	4	4. 89	5	-25.72	6	-9. 78	9
	2.85	-31.01	10	-12.39	11	-26. 24	6	-10.17	9
Kragarm rechts	0.00	-31.01	6	-12.39	9	13.49	9	33.66	6
_	0. 35	-19. 26	6	-7.69	9	13. 37	9	33.50	6
	0. 35	-19. 26	6	-7.69	9	6.88	9	17.01	6
	1. 50	0.00	-	0.00	-	6.49	9	16. 49	6

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

Nachweis E-E Abs. 6.2 Nachweis der Biege- und Querkrafttragfähigkeit x Ek QS/ $M_{y,d}$ $V_{z,d}$ σ_d

Feld 1

		Pkt			$ au_{d}$	
[m]			[kNm]	[kN]	$\sigma_{V,d}$ [N/mm 2]	[-]
(L = 2.8 0.00	5 i 2	m) 1/1	0.00	22. 58	0. 00 26. 28	0. 19
0. 20	2	1/1	4. 51	22. 49	45. 52 0. 00 26. 17	0. 19
0.43	2	1/2	4. 58	0. 25	45. 33 21. 19 0. 08	0. 09
1. 70	6	1/1	-1. 13	-25. 72	21. 19 0. 00 29. 93	0. 22
2. 04	7	1/2	-13. 55	-21.08	51. 84 62. 71 6. 26 63. 64	0. 27
2. 85	6	1/2	-31.01	-26. 24	143. 58 7. 79 144. 22	0. 61*

Kragarm rechts

(L = 1.50 m)

Х	Ek	QS/ Pkt	My, d	$V_{z,d}$	$\sigma_{ m d}$	η
[m] 0.00	10	1/2	[kNm] -31.01	[kN] 33.66	$\begin{array}{c} \sigma_{\text{V, d}} \\ \hline [\text{N/mm}^2] \\ 143.58 \\ 9.99 \end{array}$	[-] 0.62*
0. 35	10	1/2	-19. 26	33. 50	144. 62 89. 17 9. 94 90. 82	0. 39
1. 50	10	1/1	0.00	16. 49	0. 00 19. 19 33. 23	0. 14
Nachwo	ic d	or St	ahilität			

27 U4

Seebrücke

<u>Stabilität</u>	Nachwei s	der	Stabili	tät

Festhal tungen x-Koordinaten [m] bzgl. Feldanfang Feld 1 0.00 GL, 2.85 GL Kragarm rechts 0.00 GL

GL: Gabel Lager

Globale Beiwerte Bezugsschlankhei tsgrad: 93.91 $\lambda_1 =$ Trägheitsrad. des Gurtes: 3.80 cm Verei nfachter L_{c} Ek Abs. Kc vorhλ zuΙλ χ maxM η [m] Nachwei s [kNm] Feld 1 -30.85 0.52* 2.85 0.56 0.45 0.85

Kragarm rechts 6 1 3.00 0.67 0.56 0.85 - -31.01 0.66*

Nachweise (GZG) Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1993

<u>Verformungsnachweis</u> max. Verformungen

	x Ek	W_{z}	W_{res}	W_{zul}	η
	[m]	[mm]	[mm]	[mm]	[-]
Feld 1	2.04 14	0. 94	0.94	9. 50	0.10
Kragarm rechts	1.50 14	7.34	7.34	10.00	0.73

<u>Auflagerkräfte</u> Charakteristische und Bemessungsauflagerkräfte

Char. A	lufl agerkr.	Aufl.	$F_{z, k, min}$	$F_{z, k, max}$
			[kN]	[kN] 8.36
Einw. G	ik	A	8. 36	
		В	26. 74	26.74
Einw. Q	lk. N	A	-2. 16	6.37
		В		12.02
Einw. Q	lk. S	A		2. 33
		В		7.46
Einw. Q	lk.W	A	-1. 02	
		В	-2.05	

Bemauflagerkräfte	e Aufl.	F _{z, d, min}	ΕK	F _{z, d, max}	ΕK
G		[KN]		[kN]	
Komb. 19	A	4. 19	1	22. 58	2
	В	23. 66	9	59. 90	6

 Proj.Bez
 Neubau einer Seebrücke mit Restaurant
 Seite
 28

 Teilproj.:
 Teilprojekt1
 Position
 U4

 Datum
 04.09.2015
 mb BauStatik S312.de
 2013.101
 Projekt
 Seebrücke

Zusammenfassung	Zusammenfassung der Nachweise							
Nachweise (GZT)	Nachweise im Grenzzustand der Tragfähigkeit							
	Nachwei s	Feld	X [m]	η [-]				
	Nachweis E-E Stabilität	Kragarm rechts Kragarm rechts	0.00 OK 2.85 OK					
Nachweise (GZG)	Nachweise im Gren	zzust. der Gebrau	chstauglic	hkei t				
	Nachwei s	Feld	Χ [m]	η Γ - 1				
	Verformung	Kragarm rechts	1.50 OK	0.73				

Neubau einer Seebrücke mit Restaurant Proj.Bez

Seite

29 U5

Datum

Teilproj.: Teilprojekt1 04.09.2015

mb BauStatik S312.de 2013.101

Position Projekt

1.50

Seebrücke

<u>Pos. U5</u>	Unterzug - Stahlträger							
System	Durchl aufträger							
M 1. 20	System z-Richtung							
M 1: 30	X ^z							
	A ² 2.00	B 1.50						
	÷ 3.5	0						
Abmessungen Mat./Querschnitt	Feld Lage Achs							
		est S 235 HEB 140 est						
Aufl ager	Lager x b [m] [cm] A 0.00 20.0	$\begin{array}{cccc} Art & K_{T,z} & K_{R,y} \\ & & & & [kN/m] & [kNm/rad] \\ & & & & fest & frei \end{array}$						
	A 0.00 20.0 B 2.00 20.0	fest frei						
<u>Ei nwi rkungen</u>	Einwirkungen nach DIN EN	1990: 2010-12						
Gk Qk. N	Ständige Einwirkungen Kategorie A - Wohn- und	fw						
Qk. W	Aufenthal tsräume Windlasten	Aufenthal tsräume						
	Qk.W (min/max We	erte)						
Qk. S	Schnee- und Eislasten fü NN + 1000 m Qk.S (min/max We							
Erläuterungen	Gruppen (LG) Einwirkungen, die der gleichen Lastgruppe zugeordnet werden, können nicht gleichzeitig auftreten. feldweise (fw) Die Lasten der Einwirkung werden als feldweise wirkend aufgeteilt.							
<u>Bel astungen</u>	Belastungen auf das Syst	em						
Ei gengewi cht	Feld	Profil A g [cm²] [kN/m]						
	1-kr	HEB 140 43.0 0.34						
<u>Grafik</u>	Belastungsgrafiken (Einw	i rkungsbezogen)						
Ei nwi rkungen	Gk	Qk. N						
	9.55 0.34 7.27 7.27	4.78 3.33 3.33						

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 30 Teilproj.: U5 Position Teilprojekt1

04.09.2015 mb BauStatik S312.de 2013.101 Datum

Projekt

Seebrücke

QK.W				UK. S		
	-1.02	-0.52	-0.52	2.78	2.12	2.12
▼z 1.05	1.50	95		Vz 1.05	1.50 95	

Streckenlasten in z-Richtung Einw. Gk

Fel d	Komm.	а	S	qri	q re	е
		[m]	[m]	[kN/m]	[kN/mˈ]	[cm]
1	Ei gengew	0.00	3. 50		0. 34	0.0

Punktl asten in z-Richtung

Einw. Gk

Einw. Qk. N Einw. Qk. W Einw. Qk. S

Einzellaste	en		
Feld Komm.	а	F_z	е
	[m]	[kN]	[cm]
(a) 1	1. 05	9. 55	0.0
(b) 1	2. 55	7. 27	0.0
(b) Kr	1. 50	7. 27	0.0
(a) 1	1. 05	4. 78	0.0
(b) 1	2. 55	3. 33	0.0
(b) Kr	1. 50	3. 33	0.0
(a) 1	1. 05	-1.02	0.0

(a) 2. 55 (b) 1. 50 (b) <u>K</u>r 1.05 1 (a) 55
 50 1 (b) _(b) Kr

-0.52 0.0 <u>-0</u>. 52 0.0 2. 78 2. 12 2. 12 0.0 0.0 0.0

(a)

aus Pos. 'U1', Lager 'A' (Seite 7)

(b)

aus Pos. 'U1.1', Lager 'A' (Seite 12) Schnittgrößen gemäß DIN EN 1990

<u>Kombi nati onen</u>	
Grundkombi nati on	E_d

Ek	Σ (γ *ψ * EW	(Felder: 1,,n)) +1.50*Qk.N
1	1. 35*Gk	
		(2)
	+0. 75*Qk. S	
2	1. 00*Gk	+1.50*Qk.N
		(1)
	+0.90*Qk.W	
3	1. 00*Gk	
4	1. 35*Gk	+1.05*Qk.N
		(1, 2)
	+1.50*Qk.S	
<u>5</u>	1. 00*Gk	+1.50*Qk.W
6	1. 35*Gk	+1.05*Qk.N
		(2)
	+1.50*Qk.S	
7	1. 00*Gk	+1.05*Qk.N
		(1)
	+1.50*Qk.W	• •

q-st. Komb. Ed, perm

Ekperm	Σ (γ *ψ *	EW (Felder: 1,,n))
8	1. 00*Gk	
9	1. 00*Gk	+0.30*Qk.N
		(1)
10	1. 00*Gk	+0. 30*Qk. N
		(2)

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite Position 31 U5

Datum 04.09.2015

Teilproj.: Teilprojekt1

mb BauStatik S312.de 2013.101

Projekt

Seebrücke

Bemschni ttgrößen	Bemessungsschni ttgrößen
<u>Tabel I e</u>	Schnittgrößen (Umhüllende)
Feld 1 Kragarm rechts	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0. 55 -15. 87 4 -6. 32 5 13. 30 5 33. 41 0. 55 -15. 87 4 -6. 32 5 6. 81 5 16. 92 1. 50 0. 00 - 0. 00 - 6. 49 5 16. 49
Nachweise (GZT)	Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993
Nachweis E-E Abs. 6.2	Nachweis der Biege- und Querkrafttragfähigkeit x Ek QS/ $M_{y,d}$ $V_{z,d}$ σ_d η Pkt τ_d $\sigma_{v,d}$
Feld 1	$[m]$ $[kNm]$ $[kN]$ $[N/mm^2]$ $[-]$
r Cru	0.00 1 1/1 0.00 -9.50 0.00 0.08 11.05 19.15
	1.05 4 1/2 -6.78 -28.77 20.65 0.25 31.46 58.27
	1. 26
	2.00 4 1/3 -34.31 -29.20 158.85 0.68 8.66 159.56
Kragarm rechts	(L = 1.50 m) 0.00 4 1/3 -34.31 33.66 158.85 0.68 9.99 159.79
	0. 55 4 1/2 -15. 87 33. 41 48. 34 0. 34 36. 53 79. 63
	1.50 4 1/1 0.00 16.49 0.00 0.14 19.19 33.23
<u>Stabilität</u>	Nachweis der Stabilität

<u>Stabilitat</u>

Festhal tungen Feld 1 Kragarm rechts x-Koordinaten [m] bzgl. 0.00 GL, 2.00 GL Fel danfang

0.00 GL

GL: Gabellager

Globale Beiwerte

Bezugsschl ankhei tsgrad: Trägheitsrad. des Gurtes: λ1 = 93.91 3.80

 cm

Datum 04.09.20	mb BauStatik S312.c	de 2013.101	Projekt Seebrücke
Vereinfachter Nachweis Feld 1	[m] 1 1 2.00 0.6		χ max M η [kNm]34.13 0.46*
Kragarm rechts Nachweise (GZG)	4 1 3.00 0.6 Nachweise im Gren	zzustand der	34.31 0.72*
<u>Verformungsnachweis</u>	Gebrauchstauglich max. Verformungen x Ek	Wz Wres	W _{zul} η
Feld 1 Kragarm rechts	1. 26 10 0	mm] [mm] .91 0.91 .79 7.79	[mm] [-] 6.67 0.14 10.00 0.78
<u>Auflagerkräfte</u>	Charakteri sti sche	und Bemessungs	aufl agerkräfte
Char. Auflagerkr.	Aufl.	F _{z, k, mi n} [kN]	F _{z, k, max} [kN]
Einw. Gk	A B	-2. 77 28. 03	-2.77 28.03
Einw. Qk.N	<u>В</u> А В	-3. 42	2. 27 12. 59
Einw. Qk.S	Ā B	-0. 85	7. 86
Einw. Qk.W	Ä B	-2. 10	0. 05
Bemauflagerkräfte	Aufl.	F _{z,d,min} EK [kN]	F _{z,d,max} EK 「kN]
Komb. 15	A B	-9. 50 1 24. 88 5	0. 68 2 62. 86 4
Zusammenfassung	Zusammenfassung d	er Nachweise	
Nachweise (GZT)	Nachweise im Gren	zzustand der Tr	agfähi gkei t
	Nachwei s	Feld	χ η [m] [-]
	Nachweis E-E Stabilität	Feld 1 Kragarm rechts	2.00 OK 0.68 2.00 OK 0.72
Nachweise (GZG)	Nachweise im Gren	zzust. der Gebr	auchstaugl i chkei t
	Nachwei s	Feld	Χ η [m] [_]

Kragarm rechts

Verformung

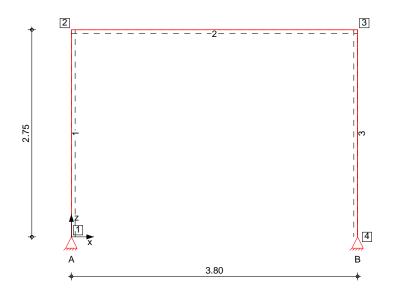
Proj.BezNeubau einer Seebrücke mit RestaurantSeite33Teilproj.:Teilprojekt1PositionR1

Datum **04.09.2015** mb Ba

mb BauStatik S601.de 2013.101

Projekt

Seebrücke


Pos. R1

Stahlrahmenkonstruktion

<u>System</u>

Stabwerk

M 1:50

Knotendefinition	Knoten	X	Z
		[m]	[m]
	1	0.00	0.00
	2	0.00	2. 75
	3	3.80	2. 75
	4	3.80	0.00

Stabdefi ni ti on	Stab	von	bis	- 1	Lage	Achse	Materi al	Querschnitt
		Kn.	Kn.	[m]	[°]			
	1	1	2	2. 75	0.0	fest	S 235	HEB 140
	2	2	3	3.80	0.0	fest	S 235	HEB 140
	3	3	4	2 75	0 0	fest	S 235	HFR 140

Stabendgelenke Alle Stäbe sind druck-, zug- und biegesteif angeschlossen.

Auflagerdefinition global	Lager	Kn.	K _{T,×} [kN/m]	K _{T,z} [kN/m]	K _{R,y} [kNm/rad]
<u> </u>	A	1	fest	fest	frei
	B	4	fest	fest	frei

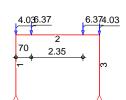
<u>Ei nwi rkungen</u>	EINWIRKUNGEN NACH DIN EN 1990: 2010-1	2	
Gk Qk. N	Ständige Einwirkungen Kategorie A - Wohn- und		fw
Qk.W	Aufenthaltsräume Windlasten Qk.W (min/max Werte)	LG 98	
Qk. S	Schnee- und Eislasten für Orte bis NN + 1000 m Qk.S (min/max Werte)	LG 99	

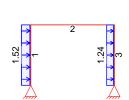
Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 34 R1 Teilproj.: Teilprojekt1 Position 04.09.2015 mb BauStatik S601.de 2013.101 Projekt Seebrücke Datum

Bel astungen


Belastungen auf das System

Grafi k


Belastungsgrafiken (Einwirkungsbezogen)


Qk. N

Ei nwi rkungen

Gk

Qk. W

Qk. S 2.35

Ei gengewi cht in z-Richtung

Einw. Gk

Eigengewicht am Stab Stab Kommentar

1 - 3Ei gengew

Streckenlasten am Stab

[kN]

8.32

8.36

8.36

6. 37 2. 34 2. 34 2. 33 2. 33

kΝ

kΝ

kΝ

kΝ

Streckenl asten in x-Richtung

Einw. Qk. W

Stab Kommentar	а	S	q _{x,1i}	q _{x, re}
	[m]	[m]	[kN/m]	[kN/m]
1	0.00	2.75		1. 52
3	0.00	2.75		1. 24

а

Punktl asten in x-/z-Richtung

Einw. Gk Einw. Qk. N Einw. Qk. S

Einzellasten am Stab Stab Kommentar

	[m]	[kN]
1	2. 75	
. 3	0.00	
2	0.70	
2	3. 05	
. 1	2.75	
3	0.00	
2	0. 70	
2	3. 05	
. 1	2.75	
3	0.00	
2	0.70	
2	3.05	

(a)	aus	Pos.	U3	A-Vz-Gk-max
(b)	aus	Pos.	U4	A-Vz-Gk-max

(a)

(a)

(b)

(b)

(c) (c) (d)

(d)

(e) (e) (f) (f)

8.357 =

4.028 =

[kN]

8.32

	Proj.Bez	Neubau einer	Seebrücl	ke mit Restaurant			Seite		35
	Teilproj.:	Teilprojekt1					Position		R1
	Datum	04.09.2015	mb B	auStatik S601.de	2013.101		Projekt	Se	ebrücke
(e)		aus	Pos.	U3 A-Vz-Qk	.S-max	2.	336 =	2. 34	kN
(f)		aus	Pos.	U4 A-Vz-Qk	.S-max	2.	332 =	2. 33	kN

	Ek
ständi g/vorüberg.	1

Kombi nati onen

Komb	oi nati onsbi I dun	g nach DIN EN	1990
Ek	Σ (γ *ψ*EW)		
1 2	1. 35*Gk 1. 35*Gk	+1.50*Qk.N (1,2)	
3	1. 35*Gk	+1.50*Qk.W	
4 5	1. 35*Gk 1. 35*Gk	+1.50*Qk.S +1.05*Qk.N	+1.50*Qk.W
6	1. 35*Gk	(1, 2) +1. 50*Qk. N	+0.75*Qk.S
7	1. 35*Gk	(1, 2) +1. 05*Qk. N (1, 2)	+1.50*Qk.S
8 9	1. 35*Gk 1. 35*Gk	+1.50*Qk.W +1.05*Qk.N	+0.75*Qk.S +1.50*Qk.W
10	+0.75*Qk.S	(1, 2)	
10 11	1. 00*Gk 1. 00*Gk	+1.50*Qk.N	
12 13	1. 00*Gk	(1, 2) +1. 50*Qk. W	
14	1. 00*Gk 1. 00*Gk	+1. 50*Qk. S +1. 05*Qk. N	+1.50*Qk.W
15	1.00*Gk	(1, 2) +1. 50*Qk. N	+0.75*Qk.S
16	1.00*Gk	(1, 2) +1. 05*Qk. N	+1.50*Qk.S
17 18	1. 00*Gk 1. 00*Gk	(1, 2) +1. 50*Qk. W +1. 05*Qk. N (1, 2)	+0.75*Qk.S +1.50*Qk.W
19	+0. 75*Qk. S 1. 35*Gk	+1.50*Qk.N (3)	
20	1.35*Gk	+1.50*Qk.N (3)	+0.90*Qk.W
21	1.35*Gk	+1. 05*Qk. N (3)	+1.50*Qk.W
22	1.35*Gk	+1. 05*Qk. N (3)	+1.50*Qk.S
23 24	1. 35*Gk 1. 35*Gk	+0.90*Qk.W +1.05*Qk.N (3)	+1.50*Qk.S +0.90*Qk.W
25	+1.50*Qk.S 1.00*Gk	+1.50*Qk.N (3)	
26	1.00*Gk	+1.50*Qk.N (3)	+0.90*Qk.W
27	1.00*Gk	+1. 05*Qk. N (3)	+1.50*Qk.W
28	1.00*Gk	+1. 05 *Qk. N (3)	+1.50*Qk.S
29 30	1. 00*Gk 1. 00*Gk	+0.90*Qk.W +1.05*Qk.N (3)	+1.50*Qk.S +0.90*Qk.W
	+1.50*Qk.S	(3)	

 Proj.Bez
 Neubau einer Seebrücke mit Restaurant
 Seite
 36

 Teilproj.:
 Teilprojekt1
 Position
 R1

 Datum
 04.09.2015
 mb BauStatik S601.de
 2013.101
 Projekt
 Seebrücke

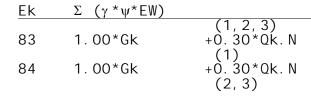
Ek	Σ (γ * ψ * EW) 1 35 * Gk		
31	1. 35*Gk	+1.50*Qk.N (2,3)	
32	1. 35*Gk	+1. 05*Qk. N (2, 3)	+1.50*Qk.W
33	1.35*Gk	+1.50*Qk.N (2,3)	+0.75*Qk.S
34	1.35*Gk	+1. 05*Qk. N (2, 3)	+1.50*Qk.S
35	1. 35*Gk	+1.05*Qk.N (2,3)	+1.50*Qk.W
36	+0. 75*Qk. S 1. 00*Gk	+1.50*Qk.N (2,3)	
37	1.00*Gk	+1.05*Qk.N (2,3)	+1.50*Qk.W
38	1.00*Gk	+1.50*Qk.N (2,3)	+0.75*Qk.S
39	1.00*Gk	+1.05*Qk.N	+1.50*Qk.S
40	1.00*Gk	(2, 3) +1. 05*Qk. N (2, 3)	+1.50*Qk.W
41	+0.75*Qk.S 1.35*Gk	+1.50*Qk.N	
42	1. 35*Gk	(1) +1.50*Qk.N	+0.90*Qk.W
43	1. 35 *Gk	(1) +1.05*Qk.N	+1.50*Qk.W
44	1. 35 *Gk	(1) +1.05*Qk.N	+1. 50 °QK. W
		(1)	
45	1. 35*Gk	+1.05*Qk.N (1)	+0.90*Qk.W
46	+1. 50*Qk. S 1. 00*Gk	+1.50*Qk.N (1)	
47	1.00*Gk	+1.50*Qk.N (1)	+0.90*Qk.W
48	1.00*Gk	+1. 05*Qk. N (1)	+1.50*Qk.W
49	1.00*Gk	+1.05*Qk.N (1)	+1.50*Qk.S
50	1.00*Gk	+1. 05*Qk. N (1)	+0.90*Qk.W
51	+1.50*Qk.S 1.35*Gk	+1.50*Qk.N	+0.90*Qk.W
52	1. 35*Gk	(1, 2) +1.50*Qk.N	+0.90*Qk.W
	+0. 75*Qk. S	(1, 2)	
53	1. 35*Gk	+1.05*Qk.N (1,2)	+0.90*Qk.W
54	+1.50*Qk.S 1.00*Gk	+1.50*Qk.N	+0.90*Qk.W
55	1.00*Gk	(1, 2) +1. 50*Qk. N	+0.90*Qk.W
56	+0. 75*Qk. S 1. 00*Gk	(1, 2) +1. 05*Qk. N	+0.90*Qk.W
	+1.50*Qk.S	(1, 2)	

Proj.BezNeubau einer Seebrücke mit RestaurantSeite37Teilproj.:Teilprojekt1PositionR1Datum04.09.2015mb BauStatik S601.de2013.101ProjektSeebrücke

E1.	5 (+ +FM)		
<u>Ek</u> 57	Σ (γ *ψ*EW) 1. 35*Gk	+1.50*Qk.N	
58	1.35*Gk	(2) +1.50*Qk.N	+0.90*Qk.W
59	1. 35*Gk	(2) +1.05*Qk.N	+1.50*Qk.W
60	1. 35*Gk	(2) +1.50*Qk.N	+0. 75*Qk. S
61	1.35*Gk	(2) +1.05*Qk.N	+1.50*Qk.S
62	1.35*Gk	(2) +1.50*Qk.N	+0.90*Qk.W
63	+0. 75*Qk. S 1. 35*Gk	(2) +1.05*Qk.N (2)	+1.50*Qk.W
64	+0. 75*Qk. S 1. 35*Gk	+1. 05*Qk. N (2)	+0.90*Qk.W
65	+1.50*Qk.S 1.00*Gk	+1.50*Qk.N (2)	
66	1.00*Gk	+1.50*Qk.N	+0.90*Qk.W
67	1.00*Gk	(2) +1.05*Qk.N (2)	+1.50*Qk.W
68	1.00*Gk	+1.50*Qk.N	+0. 75*Qk. S
69	1.00*Gk	(2) +1.05*Qk.N (2)	+1.50*Qk.S
70	1.00*Gk	+1.50*Qk.N (2)	+0.90*Qk.W
71	+0. 75*Qk. S 1. 00*Gk	+1. 05*Qk. N (2)	+1.50*Qk.W
72	+0. 75*Qk. S 1. 00*Gk	+1. 05*Qk. N (2)	+0.90*Qk.W
73	+1.50*Qk.S 1.35*Gk	+1.50*Qk.N	+0.90*Qk.W
74	1.35*Gk	(2,3) +1.50*Qk.N (2,3)	+0.90*Qk.W
75	+0. 75*Qk. S 1. 35*Gk	+1. 05*Qk. N (2, 3)	+0.90*Qk.W
76	+1.50*Qk.S 1.00*Gk	+1. 50*Qk. N	+0.90*Qk.W
77	1. 00*Gk	(2, 3) +1.50*Qk.N	+0.90*Qk.W
78	+0.75*Qk.S 1.00*Gk	(2,3) +1.05*Qk.N (2,3)	+0.90*Qk.W
79	+1.50*Qk.S 1.00*Gk	0.00+01.11	
80	1. 00*Gk	+0. 30*Qk. N (1, 2)	
81	1. 00*Gk	+0.30*Qk.N (3)	
82	1. 00*Gk	+0.30*Qk.N	

quasi -ständig

Proj.Bez Neubau einer Seebrücke mit Restaurant

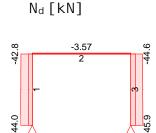

Seite Position 38 R1

Teilproj.: Datum Teilprojekt1 **04.09.2015**

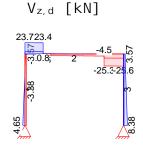
mb BauStatik S601.de 2013.101

Projekt

Seebrücke


Bem. -schni ttgrößen

Bemessungsschnittgrößen Theorie I. Ordnung


<u>Grafik</u>

Schnittgrößen (Umhüllende)

Kombi nati onen

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

	x [m]	Nd, mi n Nd, max [KN]	Ek Ek	My, d, mi n My, d, max 「kNm]	Ek Ek	$V_{z, d, min}$ $V_{z, d, max}$	Ek Ek
1	0.00	-44.03	6	0.00	_	-3.38	6
		-14. 25	12	0.00	-	4. 65	27
	2.06	-43.09	6	-6. 98	6	-3.38	6
		-13.55	12	4.74	27	-0.05	27
	2.75	-42.77	6	-9. 30	6	-3.57	52
		-13.32	12	4. 17	27	-1.30	25
2	0.00	-3.57	52	-9. 30	6	5.00	27
		-1.30	10	4. 17	27	23.74	6
	0.70	-3.57	52	2. 71	46	4.76	27
		-1.30	10	11. 18	35	23.43	6
	0.70	-3.57	52	2. 71	46	-3.60	27
		-1.30	10	11. 18	35	0.84	6
	3.80	-3.57	52	-16.05	35	-25.62	52
		-1.30	10	-3.58	46	-8.89	46
3	0.00	-44.65	74	-16.05	35	1. 30	46
		-17. 21	10	-3.58	46	3. 57	74
	2.75	-45.90	74	0.00	_	1. 30	46
		-18.14	10	0.00	_	8. 38	9

Bem. -verformungen

Bemessungsverformungen Theorie I. Ordnung

<u>Tabel I e</u>

Verformungen (Umhüllende)

	Χ	Wz, d, mi n	Ek	Wz, d, max	Ek	W_{X} , d , min	Ek	Wx, d, max	Ek
	[m]	[mm]		[mm]		[mm]		[mm]	
1	0.00	0.00	_	0.00	_	0.00	_	0.00	-
	1. 59	-0.67	80	-0. 55	81	-0.04	80	-0.03	79
	2. 75	-0.01	80	0.00	81	-0.06	80	-0.05	79
2	0.00	0.05	79	0.06	82	-0.01	80	0.00	81
	1. 91	1. 59	79	1. 92	82	-0.01	80	-0.01	81
	3.80	0.05	79	0.06	82	-0.02	80	-0.01	81
3	0.00	0.01	81	0.02	80	0.05	79	0.06	82
	1. 17	-0.66	84	-0.54	83	0.03	79	0.04	82
	2. 75	0.00	_	0.00	_	0.00	_	0.00	_

Proj.Bez Neubau einer Seebrücke mit Restaurant Seite

39 R1

Teilproj.: Datum

Teilprojekt1 04.09.2015

mb BauStatik S601.de 2013.101

Position Projekt

Seebrücke

Mat. /Querschnitt

Material - und Querschnittswerte nach DIN EN 1993

Material

Material $\lceil N/mm^2 \rceil$ S 235 210000

Querschni tt

Nr	Profil	Α	${f W_y}$	Sy	lу	Ιt
		[cm ²]	$[cm^3]$	$[cm^3]$	$[cm^4]$	[cm4]
1	HEB 140	43.0	216.0	123. 0	1510	20. 1
			78.5	59. 5	550	

Grafi k

Querschnittsgrafik [mm]

M 1:10

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

Nachweis E-E

Nachweis der Biege- und Querkrafttragfähigkeit $M_{y,d}$ $N_{x,d}$

 $V_{z,\,d}$

η

Abs. 6.2

 τ_d $\sigma_{v,\,d}$ [kN] [kNm] [kN] $[N/mm^2]$ -9.30-3.38 53.01 1.00 53.04 -3. 29 3.80 -16.05 -24.43 75. 05 0.32 7. 25

Stab 3

Stab 1

Stab 2

76.10 83. 97 0. 98 0.00 35 -41.65 -16.05 3. 29 0.36* 83.99

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1993

<u>Verformungsnachweis</u> max. Verformungen

Stab	1
Stab	2
Stah	3

Χ	Ek	\	Vz Wzul	η
[m]		[mm	[mm]	[-]
1. 59	80	0. 6	7 9. 17	0.07
1. 91	82	1. 9	2 12.67	0. 15
1 17	84	0.6	6 9 17	0.07

Aufl agerkräfte

Charakteristische Auflagerkräfte (global)

Char.	Auflagerkr.

AUTI.	⊢x,k,min	⊢x,k,max	⊢z,k,min	⊢z,k,max
	[kN]	[kN]	[kN]	[kN]
A	-1.30	-1. 30	18. 36	18. 36
В	1. 30	1. 30	18. 14	18. 14
A	0.00	-0. 92	0.00	10. 48
R	0.92	0.00	0.00	10 31

Einw. Qk. N

Einw. Gk

	Datum	04.09.2015 r	nb BauStatik S601.de	2013.101	Projekt	Seebrücke
		Aufl.	F _{x, k, mi n} [kN]	F _{x, k, max} [kN]	F _{z, k, mi n} [kN]	F _{z, k, max} [kN]
Einw. Q	k.W	Ā	3. 97	3. 97	-2.74	-2.74
Einw. Q	k. S	<u>В</u> А В	3. 61 -0. 34 0. 34	3. 61 -0. 34 0. 34	2. 74 4. 70 4. 64	2. 74 4. 70 4. 64
Zusamme	nfassung	g Zusamı	menfassung der	Nachweise		
<u>Nachwei</u>	se (GZT)	<u> </u>	eise im Grenzz	ustand der	Tragfähi gkei	t
		Nachwe	ei s			η Γ – 1
		Nachwe	eis E-E			OK 0.36
<u>Nachwei</u>	se (GZG)	<u> </u>	eise im Grenzz	zust. der G	ebrauchstaugl	i chkei t
		Nachwe	ei s			η Γ – 1
		Verfo	rmung			OK 0.15

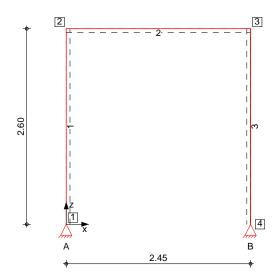
Proj.BezNeubau einer Seebrücke mit RestaurantSeite41Teilproj.:Teilprojekt1PositionR2

Datum **04.09.2015**

mb BauStatik S601.de 2013.101

Position Projekt

Seebrücke


Pos. R2

Stahlrahmenkonstruktion

<u>System</u>

Stabwerk

M 1:50

Knotendefi ni ti on	Knoten 1 2 3 4	x [m] 0.00 0.00 2.45 2.45	z [m] 0.00 2.60 2.60 0.00
Stabdefi ni ti on	Stab von bis Kn. Kn. [r 1 1 2 2.6 2 2 3 2.4 3 3 4 2.6	I Lage Achse Material [°] 00 0.0 fest S 235	Querschnitt HEB 140 HEB 140 HEB 140
Stabendgel enke	Alle Stäbe sind o angeschlossen.	Iruck-, zug- und biege	estei f
Auflagerdefinition global	Lager Kn. A 1 B 4	$\begin{array}{ccc} & K_{T,x} & K_{T,z} \\ \hline [kN/m] & [kN/m] \\ & \text{fest} & \text{fest} \\ & \text{fest} & \text{fest} \end{array}$	[kNm/rad] frei
<u>Ei nwi rkungen</u>	Einwirkungen nach	DIN EN 1990: 2010-12	
Gk Qk. N Qk. S	NN + 1000 m	nn- und	fw _G 99

Neubau einer Seebrücke mit Restaurant Proj.Bez

Gk

Teilprojekt1 04.09.2015

mb BauStatik S601.de 2013.101

Seite Position Projekt

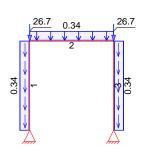
R2 Seebrücke

42

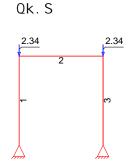
Bel astungen

Teilproj.:

Datum


Belastungen auf das System

Grafik


Belastungsgrafiken (Einwirkungsbezogen)

Qk. N

Ei nwi rkungen

12.0 12.0

Ei gengewi cht in z-Richtung

Einw. Gk

Eigengewicht am Stab Stab Kommentar

1 - 3Ei gengew

[kN]

26.74

12.02

12.02

2. 34 2. 34

kN

kΝ

Punktl asten in x-/z-Richtung

Einw. Gk

Einw. Qk. N

Einw. Qk. S

(a)

(b)

(c)

Einzellasten am Stab

Sta	ab Komment	ar a [m]
(a) 1		2. 60
(a) 3		0.00
(b) 1		2. 60
(b) 3		0.00
(c) 1		2. 60
(c) 3		0.00

26.739 =26.74

aus Pos. U4 B-Vz-Qk. N-max

aus Pos. U4 B-Vz-Gk-max

12.015 =12.02

 F_{x}

[kN]

aus Pos. U3 A-Vz-Qk. S-max

2.336 =2.34 kΝ

Kombi nati onen

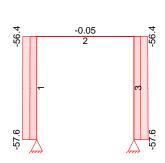
tionshildung noch DIN FN 1000

ständi g/vorüberg.

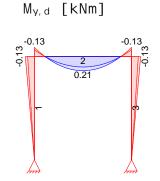
Kombi	nati onsbil dung	nach DIN EN	1990
<u>Ek</u>	Σ (γ *ψ*EW) 1.35*Gk		
2	1. 35 GK 1. 35*GK	+1.50*Qk.N (1,3)	
3 4	1. 35*Gk 1. 35*Gk	+1.50*Qk.S +1.50*Qk.N (1,3)	+0. 75*Qk. S
5	1.35*Gk	+1.05*Qk.N (1,3)	+1.50*Qk.S
6 7	1. 00*Gk 1. 00*Gk	+1.50*Qk.N (1,3)	
8 9	1. 00*Gk 1. 00*Gk	+1.50*Qk.S +1.50*Qk.N (1,3)	+0.75*Qk.S
10	1.00*Gk	+1.05*Qk.N (1,3)	+1.50*Qk.S
11	1.35*Gk	+1.50*Qk.N (2)	
12	1. 00*Gk	+1.50*Qk.N (2)	

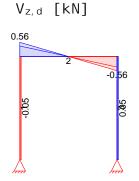
Proj. BezNeubau einer Seebrücke mit RestaurantSeite43Teilproj.:Teilprojekt1PositionR2Datum04.09.2015mb BauStatik S601.de2013.101ProjektSeebrücke

	<u>Ek</u> 13	$\Sigma (\gamma * \psi * EW)$		
	13	Σ (γ*ψ*EW) 1. 35*Gk	+1.50*Qk.N (1)	
	14	1. 35*Gk	+1.50*Qk.N (1)	+0.75*Qk.S
	15	1. 35*Gk	+1. 05*Qk. N (1)	+1.50*Qk.S
	16	1. 00*Gk	+1.50*Qk.N	
	17	1. 00*Gk	(1) +1.50*Qk.N	+0.75*Qk.S
	18	1.00*Gk	(1) +1. 05*Qk. N	+1.50*Qk.S
	19	1. 35*Gk	(1) +1.50*Qk.N	
	20	1.35*Gk	(3) +1.05*Qk.N	+1.50*Qk.S
	21	1.00*Gk	(3) +1.50*Qk.N	
	22	1.00*Gk	(3) +1. 05*Qk. N	+1.50*Qk.S
	23	1. 35*Gk	(3) +1.50*Qk.N	+0. 75*Qk. S
	24	1. 00*Gk	(3) +1.50*Qk.N (3)	+0. 75*Qk. S
quasi -ständi g	25	1. 00*Gk		
	26	1. 00*Gk	+0.30*Qk.N (1,3)	
	27	1. 00*Gk	+0. 30*Qk. N (1)	
	28	1. 00*Gk	+0.30*Qk.N (3)	


Bem. -schni ttgrößen

Bemessungsschnittgrößen Theorie I. Ordnung

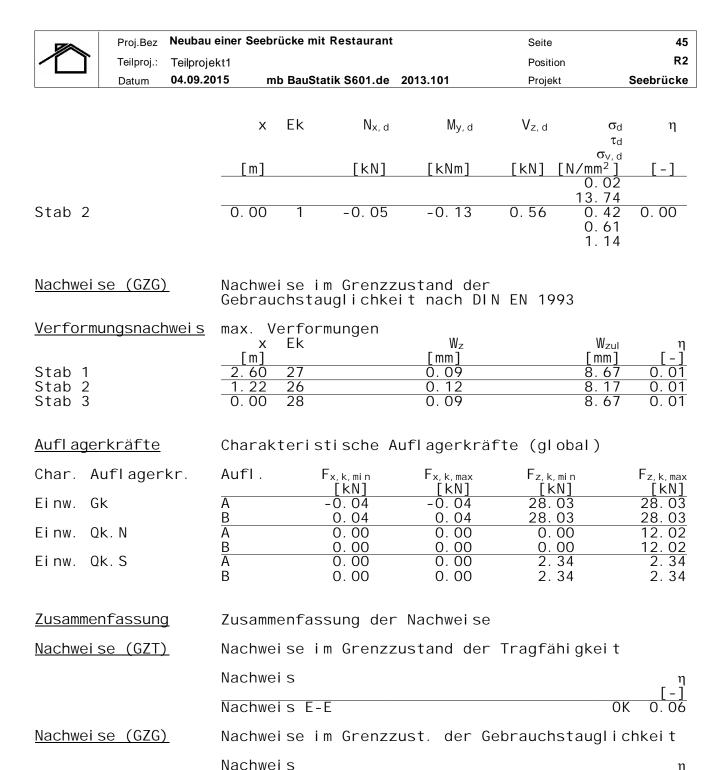

<u>Grafik</u>


Schnittgrößen (Umhüllende)

Kombi nati onen

 $N_d[kN]$

<u>Tabel I e</u>


Schnittgrößen (Umhüllende)

1	
2	

X	N_d,min	Ek	My, d, mi n	Ek	$V_{z,d,min}$	Ek
	$N_{d, max}$	Ek	$M_{y,d,max}$	Ek	$V_{z,d,max}$	Ek
[m]	[KN]		[KNm]		[kN]	
0.00	-57.61	4	0.00	-	-0.05	19
	-28.03	6	0.00	-	-0.04	16
2.60	-56. 43	4	-0. 13	19	-0.05	19
	-27. 15	6	-0. 10	16	-0.04	16
0.00	-0.05	1	-0. 13	19	0.41	16

	Proj.Bez Ne ul	bau einer Seebrücke mit Restaurant	Seite	44
	-	orojekt1 9.2015 mb BauStatik S601.de 2013.101	Position Projekt	R2 Seebrücke
	Datam 5 115		. rojem	
		$egin{array}{cccccc} X & N_{d, mi n} & Ek & M_{y, d, N_{d, max}} & Ek & M_{y, d, M_{y, d}} \ & & & & & & & & & & & & & & & & & &$	_{max} Ek	$\begin{array}{ccc} V_{z,d,min} & Ek \\ V_{z,d,max} & Ek \\ \lceilkN\rceil \end{array}$
		-0. 04 6 -0. 1. 23 -0. 05 1 0.	10 17 15 7	0. 56 19 0. 00 -
		-0.04 6 0. 2.45 -0.05 1 -0.	13 13	0.00 - -0.56 13
3		-0. 04 6 -0. 0. 00 -56. 43 4 -0.	13 13	-0. 41 21 0. 04 21
		2. 60	00 -	0. 05 13 0. 04 21 0. 05 13
Bemve	<u>rformungen</u>	Bemessungsverformungen Theori	e I. Ordnun	g
<u>Tabel I e</u>		Verformungen (Umhüllende)		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W _{x,d,min} Ek [mm]	$W_{x, d, max}$ EK [mm]
1		0.00 0.00 - 0.00 - 1.70 -0.02 27 -0.01 28	0.00 - -0.06 26	0.00 - -0.05 25
2		2. 60 -0. 01 27 0. 01 28 0. 00 0. 08 25 0. 09 26	-0.09 26 -0.01 27	-0. 08 25 0. 01 28
0		1. 23	-0. 01 27 -0. 01 27	0. 01 28 0. 01 28
3		0. 00 -0. 01 28 0. 01 27 0. 90 -0. 02 28 -0. 01 27 2. 60 0. 00 - 0. 00 -	0. 08 25 0. 05 25 0. 00 -	0.09 26 0.06 26 0.00 -
Mat./Qu	erschni tt	Material - und Querschnittswer	te nach DIN	EN 1993
Materia	I	Material	f _{y, k}	E
		S 235	[N/mm ²] 235	[N/mm ²] 210000
Quersch	ni tt	Nr Profil A W _y W _z	S _y S _z	ly It
		[cm ²] [cm ³] 1 HEB 140 43.0 216.0 78.5	$[cm^3]$ [classical contents of the contents	_z m ⁴
<u>Grafik</u>		Querschnittsgrafik [mm]		
M 1: 10				
		04 140		
<u>Nachwei</u>	se (GZT)	Nachweise im Grenzzustand der DIN EN 1993	Tragfähi gk	eit nach
Nachwei: Abs. 6.	<u>s E-E</u> 2	Nachweis der Biege- und Querk x Ek $N_{x,d}$ $M_{y,d}$	rafttragfäh V _{z, d}	igkeit σ _d η τ _d

Stab 1

Verformung

Proj.BezNeubau einer Seebrücke mit RestaurantSeite46Teilproj.:Teilprojekt1PositionR3

Projekt

Seebrücke

Pos. R3 Stahl-Rahmenknoten, geschraubt

04.09.2015

Datum

<u>System</u> Biegesteife Riegel-Stiel-Verbindung

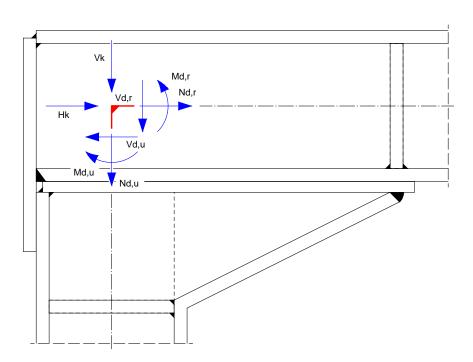
Knotentyp: Eck-Rahmenknoten

mb BauStatik S754.de 2013.101

Der Riegel wird auf dem Stiel aufgelegt. Ausführungsform: Anschluss mit Zuglasche Die Verbindung wird geschraubt ausgeführt.

Riegel, Stiel Profil h [mm] b [mm] t_w [mm] t_f [mm] r [mm] HEB 140 140 140 7.0 12.0 12.0

<u>Einwirkungen</u> Einwirkungen nach DIN EN 1990: 2010-12


Kombi nati onen

ED1 Bemessungslast

Lasten aus Grundkomb.

Bel astungen

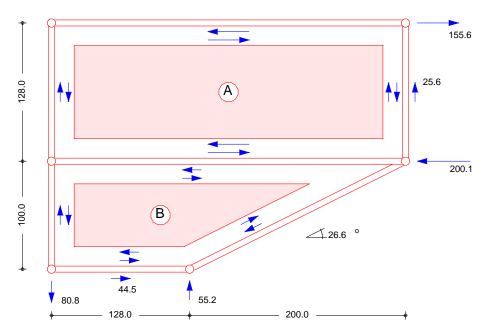
Schnittgrößen gelten für den ideellen Knotenpunkt.

Zusammenstel Lungen

ED1: N_R aus Pos R1 -44.5 = -44.50 kN

ED1: $M_{y,R}$ aus Pos E1 -16 = -16.00 kNm

ED1: $V_{z,R}$ aus Pos R1 -25.6 = -25.60 kN


Bemessung (GZT) gemäß DIN EN 1993-1-1 und DIN EN 1993-1-8

Profilstahl S 235 Streckgrenze 235.0 N/mm^2 f_y 235.0 N/mm² Grenznormal spannung = σ Rd $135.\ 7\ \text{N/mm}^2$ Grenzschubspannung = τ Rd Grenzschweißnahtspannung 207.8 N/mm² $\sigma\,\text{w, Rd}$

Art der Schraubenverbindung Schraubenart Kategorie E hochfeste Schrauben Festi gkei tsklasse 8.8 M 12 Schraubengröße Lochdurchmesser d_0 13 mm = Schei bendurchmesser D 24 mm= $F_{v,\,Rd}$ 43.4 Grenzabscherkraft kΝ $F_{t,\,Rd}$ Grenzzugkraft 48.6 kΝ

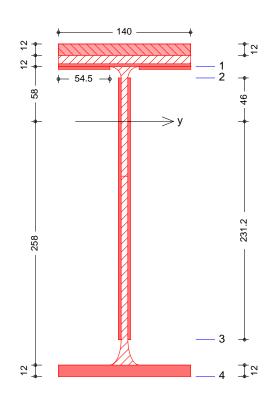
Eckfeld Nachweis wird gemäß Fachwerkanalogie durchgeführt.

Berechnungsmodell: Last 1

Anschnittmomente im Riegel -16.0 - 25.6 * 0.264 = -22.8 kNm im Stiel -16.0 + 44.5 * 0.164 = -8.7 kNm

maßg. Schubkräfte Bemessungslast 1

BI ech	T_o	T_u	T_I	T_r
	[kN]	[kN]	[kN]	[kN]
Α	155. 6	155. 6	60. 7	60. 7
В	25. 7	65. 9	20. 1	44. 9


|--|

Proj.BezNeubau einer Seebrücke mit RestaurantSeite48Teilproj.:Teilprojekt1PositionR3Datum04.09.2015mb BauStatik S754.de2013.101ProjektSeebrücke

Schubfl uß	BI ech A B	[N/mm] 474.2 78.4	[N/mm] 474.2 514.6	[N/mm] 474.2 200.8		τr N/mm] 474.2 200.8
Schubspannungen	im Riegel im Stiels		67.7 / 13 73.5 / 13	35. 7 = 35. 7 =	0. 50 0. 54	<= 1 <= 1
maßg. Rippenkräfte	Stab gel Sti el	F _o [kN] -0. (F ₁ [kN]	F _r [kl	
Rippen des Riegels	[t b mm] [mm] 12 65	[mm] [r	C a _{fo} mm] [mm] 14	a _{fu} [mm] 3	a _{w, w} [mm] 3
Kräfte je Rippe	Ri ppe 1, 2	F ₁ [kN] 13.1	F ₂ [kN] 6.3	e ₁ [mm] 39.5		e ₂ [mm] 82.0
Spannungen	Ri ppe 1, 2	σνd, 1 [N/mm²] 27.8	σνd, 2 [N/mm²] 21. 2	σ vwd, 1 [N/mm²] 47.4		/wd, 2 /mm ²] 29.6
Spannungsnachwei s	Ri ppen 1, Fl anschnä Stegnähte	2 hte unten	47.4 / 20	35.0 = 07.8 = 07.8 =	0. 12 0. 23 0. 14	<= 1 <= 1 <= 1
Rippen des Stiels		t b mm] [mm] 12 65	[mm] [r	C afi mm] [mm] 14	afr [mm] 3	a _{w, w} [mm] 3
Kräfte je Rippe	Ri ppe	F ₁ [kN] 41.1	F ₂ [kN] 19.8	e ₁ [mm] 39.5		e ₂ [mm] 82.0
Spannungen	Ri ppe 1, 2	σνd, 1 [N/mm²] 87.4	σ _{vd, 2} [N/mm ²] 66.5	σ∨wd,1 [N/mm²] 149.0		wd, 2 /mm ²] 93. 2
Spannungsnachwei s	Ri ppen 1, Fl anschnä Stegnähte	2 hte rechts	87. 4 / 23 149. 0 / 20 93. 2 / 20	35.0 = 07.8 = 07.8 =	0. 37 0. 72 0. 45	<= 1 <= 1 <= 1
Zugl asche	t [mm] 12	b [mn 140	n])	I [mm] 198	la	[mm] 65
		r Schrauber r Schrauber			2 1	
Schraubenabstände	Nr. 1	Randabsta	and [mm] 5 20	Schraubenal	ostand	[mm]
	Randabsta	nd seitlich	ı	e ₂ =	20	mm
Nachwei s	zu übertr Netto-Que N _{x,Ed} / N _{u,}	agende Kraf rschnittsfl Rd	äche	$A_{net} =$	59. 9 13. 7 0. 17	

Stegnähte	Nahtart Doppel kehl naht	a [mm] I 3	[mm] A [cm 92 5	1 ²]
Spannungsnachwei s	Stegnähte	108.5 / 207.8	= 0.52 <=	1
Nachweis Schrauben	auf Abscheren	29.9 / 43.4	= 0.69 <=	1
Lochl ei bungsdruck	Randabstände Lochabstand	$e_1 = 20 \text{ mm}$	$e_2 > 1.5 * p_2 > 3.0 *$	dL dL
Nachweis	Faktor Lochl ei bungskraft	29.9 / 53.2	= 1.28 = 0.56 <=	- 1
Anschluss des Stiel	s Stelle Flansch links Steg Voutenflansch	Nahtart Kehl nähte Doppel kehl naht HV-Naht	_	m] 3 3 2

FI ächenwerte	Fläche Flächenmoment 1.Grades Flächenmoment 2.Grades Fläche der Stegnähte		A Sy Iy Aw, w	=154	57. 7 426. 5 420. 7 16. 6	Cm ² Cm ³ Cm ⁴ Cm ²
	Anmerkung:	Für diese Ausführ Zuglasche bei de Flächenwerten berüc	er	Berec	chnung	di e von
Schni ttgrößen	Abstand des Normalkraft Biegemoment Schubkraft		a N _{Ed} M _{Ed} T _o		80 25. 6 -12. 4 25. 7	mm KN KNm KN

 Proj. Bez
 Neubau einer Seebrücke mit Restaurant
 Seite
 50

 Teilproj.:
 Teilprojekt1
 Position
 R3

 Datum
 04.09.2015
 mb BauStatik S754.de
 2013.101
 Projekt
 Seebrücke

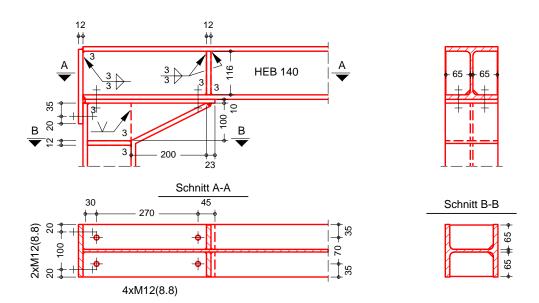
	Normal spannungen Schubspannungen	σι σι σι	vd, 1 vd, 2 vd, 3 vd, 4 vd, 2, 3	= 18 = -13 = -18 = 15	. 8 N/mm ² . 4 N/mm ² . 9 N/mm ² . 5 N/mm ² . 5 N/mm ² . 9 N/mm ²
	Vergleichswerte	σ· σ·	vd, 4 /wd, 1 /wd, 2 /wd, 3 /wd, 4	= 19 = 24 = 20	. 8 N/mm ² . 1 N/mm ² . 8 N/mm ² . 3 N/mm ²
Spannungsnachwei s	HV-Naht Stegnähte	41. 3 / 20 ² 24. 1 / 20 ²	7.8 7.8		. 20 <= 1 . 12 <= 1
Stirnplatte des Stiels	Art t [mm] bündig 10	b] [mm] 140	h [mm] 345	ü _l] [mm -6	
	Anzahl der Schrauber Anzahl der Schrauber		m n	= 2 = 2	
Schraubenabstände	Nr. Randabsta 1 2	and [mm] So 30 300	chraub	<u>benabst</u>	and [mm] 270
	Randabstand seitlich	٦	e ₂	= 35	mm
Schni ttgrößen	Abstand des Schnitte Normalkraft Biegemoment Querkraft	es	a Ned Med Ved	= 70 = 25 = -12 = -44	.6 kN .9 kNm
Nachweis Plastisch	Abstände Abmi nderungsfaktor in Plast. Moment des Fl Plast. Momente der S Plastische Querkraft Abgemind. Moment M2 Abstützkraft K Grenzkraft Z _{Rd} Flansch-Zugkraft Z	ansches Stirnplatte t 0.2 / 0 10.2 / 18 86.9 / 18		= 1 = 0 = 0 = 189 = 0 = 0	mm mm . 94 - . 2 kNm . 7 kNm . 9 kNm
Nachweis Schrauben	auf Zug auf Abscheren		3. 6 3. 4		. 62 <= 1 . 51 <= 1
Lochl ei bungsdruck	Randabstände Lochabstände	$e_1 > 3.0 * p_1 > 3.5 *$	dL dL		1.5 * dL 3.0 * dL
Nachwei s	Faktor Lochl ei bungskraft	22.3 / 8	5. 4		. 50 - . 26 <= 1

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite

51 R3

Teilproj.:


Teilprojekt1 **04.09.2015**

mb BauStatik S754.de 2013.101

Position Projekt

Seebrücke

M 1: 10

Stückliste

Riegel HEB 140 bxh = 140 x 140 mm Stiel HEB 140 bxh = 140 x 140 mm Voute hxlxs = 200 x 100 x 7 mm Rippe Riegel 2xbxhxt = 65 x 116 x 12 mm, c=14 mm Rippe Stiel 2xbxhxt = 65 x 116 x 12 mm, c=14 mm Zuglasche bxlxt = 140 x 198 x 12 mm Stirnplatte Stiel bxlxt = 140 x 345 x 10 mm Schrauben 6xSLV, FK8. 8, M12

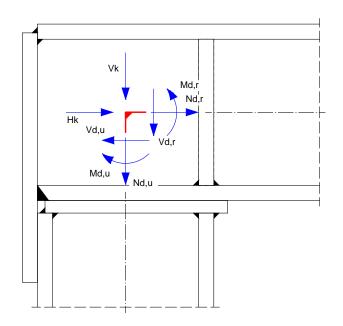
Pos. R4 Stahl-Rahmenknoten, geschraubt

<u>System</u> Bi egesteife Ri egel-Stiel-Verbindung

Knotentyp: Eck-Rahmenknoten

Der Riegel wird auf dem Stiel aufgelegt. Ausführungsform: Anschluss mit Zuglasche Die Verbindung wird geschraubt ausgeführt.

Riegel, Stiel Profil h [mm] b [mm] t_w [mm] t_f [mm] r [mm] HEB 140 140 140 7.0 12.0 12.0


<u>Einwirkungen</u> Einwirkungen nach DIN EN 1990: 2010-12

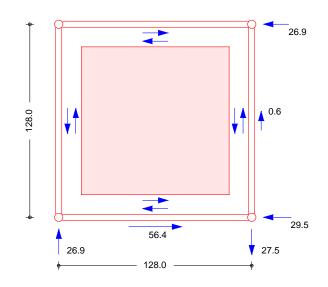
Kombi nati onen

ED1 Bemessungslast

Lasten aus Grundkomb.

<u>Belastungen</u> Schnittgrößen gelten für den ideellen Knotenpunkt.

Last		$N_{Ed}[kN]$	$M_{Ed}[kNm]$	$V_{Ed}[kN]$	$V_k[kN]$	$H_{k}[kN]$
1	ED1					
	rechts	-56. 40	-0. 13	-0. 56		
	unten	0. 56	-0. 13	-56. 40		



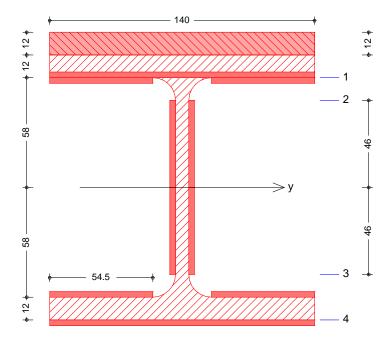
Bemessung (GZT) gemäß DIN EN 1993-1-1 und DIN EN 1993-1-8

Art der Schraubenverbindung Kategorie E Schraubenart hochfeste Schrauben Festi gkei tskl asse 8.8 Schraubengröße M 12 Lochdurchmesser 13 dο mm = Schei bendurchmesser 24 D mmGrenzabscherkraft $F_{v,\,Rd}$ 43.4 kΝ Grenzzugkraft $F_{t,\,Rd}$ 48.6 kΝ

Eckfeld Nachweis wird gemäß Fachwerkanalogie durchgeführt.

Berechnungsmodell: Bemessungslast 1

Anschni ttmomente	im Riegel im Stiel	- 0.1 - 0.6 - 0.1 + 56.4			-0.2 kNm 3.5 kNm
maßg. Schubkräfte	Bemessungslast oben, unten links, rechts		o = Tu I = Tr	= =	26. 9 kN 26. 9 kN
Schubfl uss	im Riegelsteg		τR	=	210.2 N/mm
Schubspannung	im Riegelsteg	30.0 /	′ 135.7	=	0. 22 <= 1
maßg. Rippenkräfte	Stab		- (N]	Fı [kN]	F _r BL [kN]
	gel		7.5 1	[KIN]	[KIN]
Rippen des Riegels	Rippe t 	b h [mm] [mm] 65 116	C [mm] 14	a _{fo} [mm]	$\begin{array}{ccc} a_{fu} & a_{w,w} \\ \hline [mm] & [mm] \\ \hline 3 & 3 \end{array}$


54 R4

Seebrücke

Kräfte je Rippe	Ri ppe	F ₁ [kN] 10.2	F ₂ [kN] 4.9		e ₁ [mm] 39.5		e ₂ [mm] 82.0
Spannungen	1, 2	σ vd, 1 [N/mm²] 21.8	σνd, 2 [N/mm²] 16.6	[N	wd, 1 /mm ²] 37.1	σ\ [N,	wd, 2 /mm ²] 23. 2
Spannungsnachwei s	Rippen 1, Flanschnä Stegnähte	2 ahte unten	21. 8 / 37. 1 / 23. 2 /	235. 0 207. 8 207. 8	= = =	0. 09 0. 18 0. 11	<= 1 <= 1 <= 1
Zugl asche	t [mm] 12	b [m 14	m] O	I [mi	m] 8	<u>l a</u>	[mm] 65
	Anzahl de Anzahl de	er Schraube er Schraube	nreihen n in Reih	e n	= =	2 1	
Schraubenabstände	<u>Nr.</u> 1	Randabst	and [mm] 20	Schra	ubenak	stand	[mm]
	Randabsta	and seitlic	h	e ₂	=	20	mm
Nachweis	zu übertr Netto-Que N _{x,Ed} / N _u	ragende Kra erschnittsf ,Rd	ft läche -29.5 /	F A _{ne} 354. 6	= t = =	29. 5 13. 7 -0. 08	kN cm ² <= 1
Stegnähte	Nahtart Doppel ke	ehl naht	a [mm] 3	l	[mm] 92	A	[cm ²] 5.5
Spannungsnachwei s	Stegnähte	9	53.5 /	207.8	=	0. 26	<= 1
Nachweis Schrauben	auf Absch	neren	14.8 /	43.4	=	0.34	<= 1
Lochl ei bungsdruck	Randabstä Lochabsta		$e_1 = 2$	O mm	e ₂ p ₂	> 1.5 > 3.0	* dL * dL
Nachwei s	Faktor Lochl ei bu	ıngskraft	14.8 /	53. 2	= =	1. 28 0. 28	<= 1
Anschluss des Stiels	S Stelle Flansch Flansch Steg	links	Nahtart Kehl näht Doppel ke Doppel ke	e hl naht		<u>a</u>	[mm] 3 3 3

Schweißnahtbild

55 R4

Seebrücke

Flächenwerte	FI äche	Α	=	37.3	cm^2
	Flächenmoment 1. Grades	S_v	=	122. 6	cm^3
	Flächenmoment 2. Grades	Ϊ́ν	=	1576. 4	cm^4
	Fläche der Stegnähte	Aw, w	=	5.5	cm^2

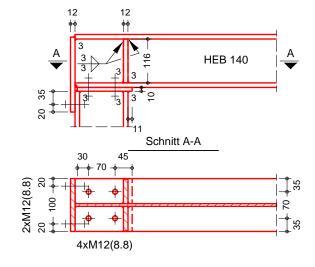
Anmerkung: Für diese Ausführungsform wird die Zuglasche bei der Berechnung von Flächenwerten berücksichtigt.

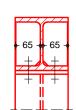
Schni ttgrößen	Abstand des Schnittes Normalkraft Biegemoment Querkraft	a Ned Med Ved	= = = =	80 0. 6 4. 4 -56. 4	mm KN KNm KN
	Normal spannungen Schubspannungen	σ wd, 1 σ wd, 2 σ wd, 3 σ wd, 4 τ wd, 2, 3	= = = =	-4. 8 29. 8	N/mm ² N/mm ² N/mm ² N/mm ²
	Vergleichswerte	$\sigma \lor wd, 1$ $\sigma \lor wd, 2$ $\sigma \lor wd, 3$ $\sigma \lor wd, 4$	= = = =	102. 3 106. 4	N/mm ² N/mm ² N/mm ² N/mm ²

 Spannungsnachweis
 Flanschnähte
 38.8 / 207.8 =
 0.19 <= 1</td>

 Stegnähte
 106.4 / 207.8 =
 0.51 <= 1</td>

Stirnplatte	Art	t	b	h	üı	ü _r
des Stiels		[mm]	[mm]	[mm]	[mm]	[mm]
	bündi g	10	140	145	-6	11


Anzahl der Schraubenreihen m = 2 Anzahl der Schrauben in Reihe n = 2



Proj.BezNeubau einer Seebrücke mit RestaurantSeite56Teilproj.:Teilprojekt1PositionR4Datum04.09.2015mb BauStatik S754.de2013.101ProjektSeebrücke

Schraubenabstände	Nr. Randabst	and [mm] 30	Schraul	benabstand	[mm]
	2	100			70
	Randabstand seitlic	h	e ₂	= 35	mm
Schni ttgrößen	Abstand des Schnitt Normalkraft Biegemoment Querkraft	es	a Ned Med Ved	= 70 = 0.6 = 3.8 = -56.4	mm kN kNm kN
Nachweis Plastisch	Abstände		е ₄ С1 С ₂	= 45 = 11 = 22	mm mm mm
	Abminderungsfaktor Plast. Moment des F Plast. Momente der	lansches Stirnplat	k M1 _{pl} te M2 _{pl} M3 _{pl}	= 0.93 = 1.2 = 0.7 = 0.9	KNM KNM KNM
	Plastische Querkraf Abgemind.Moment M ₂ Abstützkraft K Grenzkraft Z _{Rd} Flansch-Zugkraft Z	0.1 /	V _{pl} 0. 7 189. 9 189. 9 92. 2	= 0.49	kN <= 1 <= 1 <= 1
Nachweis Schrauben	auf Zug auf Abscheren	15.1 / 28.2 /		= 0.31 = 0.65	<= 1 <= 1
Lochl ei bungsdruck	Randabstände Lochabstände	$e_1 = 3$ $p_1 > 3.5$		$e_2 > 1.5$ $p_2 > 3.0$	* dL * dL
Nachweis	Faktor Lochl ei bungskraft	28. 2 /	66. 5	= 1. 92 = 0. 42	- <= 1

M 1:10

Stückliste

Riegel HEB 140 bxh = 140 x 140 mm Stiel HEB 140 bxh = 140 x 140 mm Rippe Riegel 2xbxhxt = 65 x 116 x 12 mm, c=14 mmZuglasche bxlxt = 140 x 198 x 12 mm Stirnplatte Stiel bxlxt = 140 x 145 x 10 mm Schrauben 6xSLV, FK8. 8, M12

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite

Teilproj.: Teilprojekt1 Position

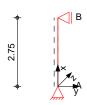
S1

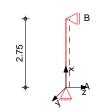
57

04.09.2015 mb BauStatik S404.de 2013.101 Datum

Projekt

Seebrücke


Pos. S1


Stahlstütze

<u>System</u>

Stahlstütze, DIN EN 1993-1-1: 2010-12

M 1: 150

Abmessungen Mat./Querschnitt [m]

Material S 235

Profil HEB 140

Aufl ager

Lager	Х	$K_{T,z}$	K _{R, y}
Ü	[m]	[kN/m] kNı	m/rad]
В	2.75	fest	frei
Α	0.00	fest	frei

 $K_{T,y}$ $K_{R,z}$ $K_{R,x}$ [kN/m]kNm/rad]kNm/rad] $K_{R, x}$ fest frei fest fest frei fest

LG 98

Kni ckl ängen

Lcr, y 2.75 m $=\ 2.\ 75\ m$ L_{cr, z} = 2.75 mLcr, LT

Ki ppl änge Lagerung

unten: Gabel, oben: Gabel

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N <u>Ständige Einwirkungen</u> Kategorie A - Wohn- und

Aufenthal tsräume

Qk. W

Windlasten Qk. W (min/max Werte)

Qk. S

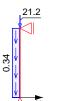
Schnee- und Eislasten für Orte bis LG 99

NN + 1000 m

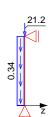
Qk. S

(min/max Werte)

<u>Bel astungen</u>


Belastungen auf das System

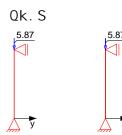
Grafi k


Bel astungsgrafiken (Einwirkungsbezogen)

Qk. N

Ei nwi rkungen

Gk



Proj.BezNeubau einer Seebrücke mit RestaurantSeite58Teilproj.:Teilprojekt1PositionS1Datum04.09.2015mb BauStatik S404.de2013.101ProjektSeebrücke

<u>Streckenlasten</u> in x-Richtung Einw. Gk

Komm.	а	S	q ı i	q re
	[m]	[m]	[kN/mˈ]	[kN/mˈ]
Ei gengew	0.00	2. 75		0.34

<u>Punktlasten</u> in x-Richtung

Ei nw.	Gk
Ei nw.	Qk.N
Ei nw.	Qk.W
Einw.	Qk. S

Einzellasten

KO	mm. a	F _X	еy	e_z
	[m]	[kN] [cm]	[cm]
(a)	2. 75	21. 16	O . C	0.0
(a)	2. 75	9. 02	0.0	0.0
(a)	2. 75	-1.17	0.0	0.0
(a)	2. 75	5. 87	J. 0	0.0

(a)

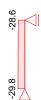
aus Pos. 'U3', Lager 'B' (Sei te 22)

Kombi nati onen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

ständi g/vorüberg.

Ek	$\Sigma (\gamma * \psi * EW)$		
1	1. 35*Gk		
8	1. 35*Gk	+1.05*Qk.N	+1.50*Qk.S


Bem. -schni ttgrößen

Bemessungsschnittgrößen Theorie I. Ordnung

<u>Grafik</u>

Schnittgrößen (je Kombination)

Komb. 1

 $N_{\text{d}} \\$

<u>Tabel I e</u>

Schnittgrößen (je Kombination)

Mat. /Querschnitt

Material - und Querschnittswerte nach DIN EN 1993

59 S1

Seebrücke

<u>Grafik</u>

Querschni ttsgrafi k

M 1: 15

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

DIN EN 199

<u>Quersch. -klasse</u> c/t-Verhältnis

Maßgebende Querschnittsklasse: Klasse 1

Nachweis E-E Abs. 6.2 Nachweis der Biege- und Querkrafttragfähigkeit My, d Ek $N_{x,d}$ $V_{z,\,d}$ Χ σ_{d} η Mz, d $V_{y, d}$ τ_{d} $\sigma_{v,\,d}$ [kN] [kNm] [kN] $\lceil N/mm^2 \rceil$ 0.00 0.00 10.89 0.00 0.00 0.00 0.00 0.00 0.00 8 -48.09 0.00 11. 18 0.05* 0.00 0.00 0.00 0.00

<u>Stabilität</u>

Nachweis der Stabilität

Stab 0

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 60 S1 Teilproj.: Position Teilprojekt1

04.09.2015 mb BauStatik S404.de 2013.101 Datum

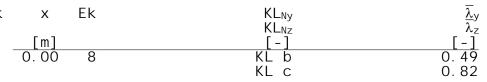
Projekt

Seebrücke

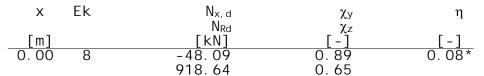
 cm

Festhal tungen

x-Koordinaten [m] bzgl. Stabanfang


0.00 GL, 2.75 GL GL: Gabellager

Globale Beiwerte


Angriffspunkt der Last: Teilsicherheitsbeiwert:

 $Z_p =$ 0.00 1.10 $\gamma_{m, 1} =$

Zwischenwerte Druck

Nachwei s

Aufl agerkräfte

Charakteristische Auflagerkräfte

Char.	Auflagerkr.	Aufl.	F _{v, k}	F _{Hz, k}	F _{Hy, k}
	· ·		[KN]	[KN]	[kŇ]
Ei nw.	Gk	A	22. 09	0.00	0.00
		В	0.00	0.00	0.00
Ei nw.	Qk. N	A	9. 02	0.00	0.00
		В	0.00	0.00	0.00
Ei nw.	Qk.W	A	-1.17	0.00	0.00
		В	0.00	0.00	0.00
Ei nw.	Qk. S	A	5. 87	0.00	0.00
		В	0.00	0.00	0.00

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit

Nachwei s	X	η
	[m]	[-]
Nachweis E-E	0.00 OK	0.05
Stabilität	0.00 OK	0.08

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite

61 UZ1

Teilproj.: Teilprojekt1
Datum **04.09.2015**

mb BauStatik S312.de 2013.101

Position Projekt

Seebrücke

Pos. UZ1 Stahträger mit Einzellast

<u>System</u> Durchl aufträger

System z-Richtung

M 1: 25

Abmessungen Mat./Querschnitt Feld I Lage Achsen Material Profil [m] [°] 1 2.85 0.0 fest S 235 HEB 180

Aufl ager

Lager b Art $K_{T, z}$ $K_{R, y}$ Х [m] [cm] [KN/m] [kNm/rad] 0.00 10.0 fest frei В 2.85 10.0 fest frei

<u>Ei nwi rkungen</u>

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N Ständige Einwirkungen Kategorie C - Versammlungsräume

fw

Qk. S

Schnee- und Eislasten für Orte bis LG 99

NN + 1000 m

Qk. S

(min/max Werte)

Erläuterungen

Gruppen (LG)

Einwirkungen, die der gleichen Lastgruppe zugeordnet werden, können nicht gleichzeitig

auftreten.

feldweise (fw)

Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.

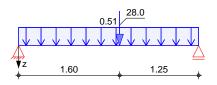
Bel astungen

Belastungen auf das System

Ei gengewi cht

Fel d

Profil A c [cm²] [kN/m] HEB 180 65.3 0.51

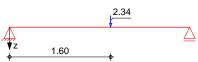

Grafi k

Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen

Gk

Qk. N



Proj.Bez Neubau einer Seebrücke mit Restaurant Seite 62 UZ1 Teilproj.: Teilprojekt1 Position 04.09.2015 mb BauStatik S312.de 2013.101 Projekt Seebrücke

Qk. S

Streckenlasten in z-Richtung Einw. Gk

Fel d	Komm.	а	S	Qı i	Q re	е
		[m]	[m]	[kN/mˈ]	[kN/mˈ]	[cm]
1	Ei gengew	0. 00	2. 85		0. 51	0.0

Punktl asten in z-Richtung

Einw.	Gk	(a)
Einw.	Qk.N	(a)
Ei nw.	Qk. S	(a)

Datum

(a)

aus Pos. 'R2', Lager 'A' (Seite 45)

Kombi nati onen Grundkombination Ed Schnittgrößen gemäß DIN EN 1990

q-st. Komb. Ed, perm

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

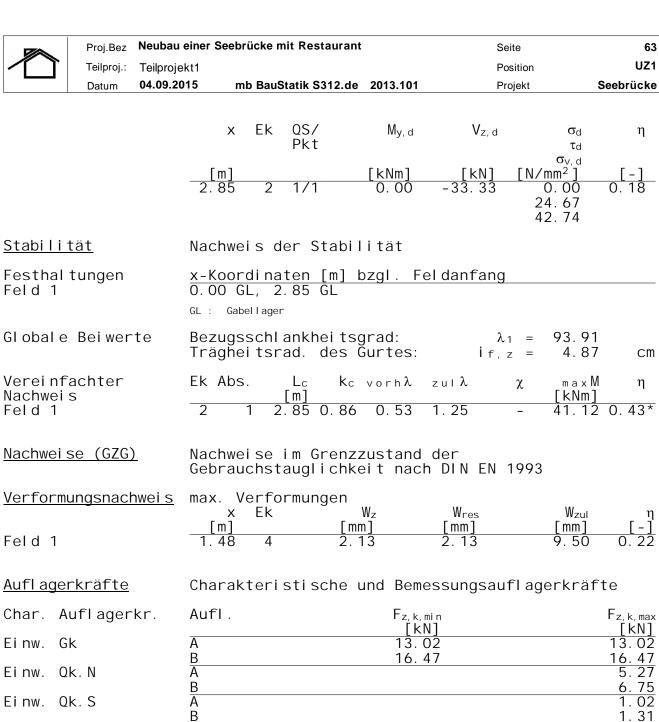
Tabel I e

Schnittgrößen (Umhüllende)

	X	My, d, min	LΚ	Wy, d, max	LΚ	Vz,d,min	ĽΚ	Vz,d,max	ĿΚ
	[m]	[KNm]		[KNm]		[kN]		[kN]	
Feld 1	0.00	0.00	_	0.00	-	13. 02	1	26. 26	2
	1. 60	20. 18	1	41. 12	2	12. 20	1	25. 15	2
	1. 60	20. 18	1	41. 12	2	-32.47	2	-15.83	1
	2.85	0.00	_	0.00	_	-33.33	2	-16.47	1

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993


Nachweis E-E Abs. 6.2

Nachweis der Biege- und Querkrafttragfähigkeit QS/ Ek $M_{V.d}$ $V_{z,d}$ $\sigma_{\sf d}$ Pkt

η

Feld 1

[m]	[kNm]	[kN]	$\begin{array}{c} \sigma_{\text{V, d}} \\ \text{[N/mm}^2\text{]} \end{array}$	[-]
(L = 2.85 m) 0.00 2 1/1	0.00	26. 26	0.00	0. 14
			19. 44 33. 66	
1.48 2 1/2	38. 04	25. 23	89. 29 4. 92	0. 38
			89. 70	
1.60 2 1/2	41. 12	-32.47	96. 53	0.41*
			6. 33	
			97. 15	

Char. Auflagerkr.	Aufl.	$F_{z, k, min}$	$F_{z,k,max}$
		[kN]	[kN]
Einw. Gk	A	13. 02	13. 02
	В	16. 47	16. 47
Einw. Qk.N	А		5. 27
	<u>B</u>		6. 75
Einw. Qk.S	Α		1. 02
	В		1. 31
Bemauflagerkräfte	e Aufl.	F _{z,d,min} EK [kN]	F _{z, d, max} ΕΚ ΓkΝΊ

Bemautragerkr	arte Aurr.	Fz,d,min EK	Fz,d,max EK
_		[kN]	[kN]
Komb. 12	Ā	13. 02 1	26. 26 2
	В	16. 47 1	33.33 2

Zusammenfassung Zusammenfassung der Nachweise Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachwei s	Feld	Χ	η
		[m]	[-]
Nachweis E-E	Feld 1	1. 60 OK	0.41
Stabilität	Feld 1	1. 60 OK	0.43

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

 Proj. Bez
 Neubau einer Seebrücke mit Restaurant
 Seite
 64

 Teilproj.:
 Teilprojekt1
 Position
 UZ1

 Datum
 04.09.2015
 mb BauStatik S312.de
 2013.101
 Projekt
 Seebrücke

Nachweis	Feld	Х	η
		[m]	[-]
Verformung	Feld 1	1. 48 OK	0. 22

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite

Projekt

LG 99

65

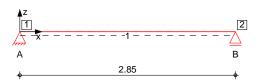
Teilproj.: Teilprojekt1
Datum **04.09.2015**

mb BauStatik S601.de 2013.101

Position

UZ2 Seebrücke

Pos. UZ2

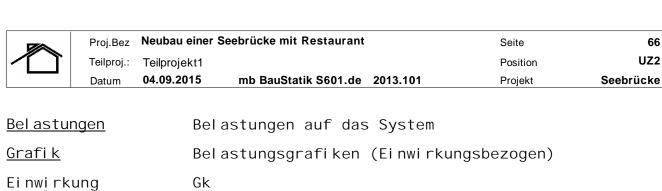

Stahlträger mit Einzellast

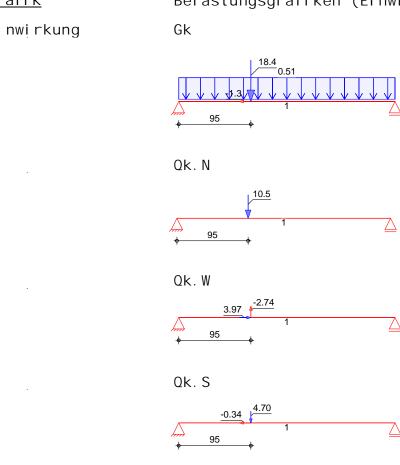
<u>System</u>

Stabwerk

M 1:50

Qk. S


Knotendefi ni ti on Knoten $\lceil m \rceil$ $\lceil m \rceil$ 0.00 0.00 2 2.85 0.00 Stabdefi ni ti on I Lage Achse Material Querschnitt Stab von bis Kn. [m]2.85 fest S 235 HEB 180 Stabendgel enke Alle Stäbe sind druck-, zug- und biegesteif angeschl ossen. Auflagerdefi ni ti on Lager Kn. $K_{T, x}$ K_{R,y} $K_{T,z}$ [kN/m] [kN/m] gl obal [kNm/rad] frei fest fest 2 frei frei fest Ei nwi rkungen Einwirkungen nach DIN EN 1990: 2010-12 Gk Ständige Einwirkungen Qk. N Kategorie C - Versammlungsräume fw Qk. W LG 98 Windlasten Qk. W (min/max Werte)


Schnee- und Eislasten für Orte bis

(min/max Werte)

NN + 1000 m

Qk. S

in z-Richtung	Stab	Kommentar		Qz
Einw. Gk	1	Ei gengew		[kN/m] 0.51
Punktlasten in x-/z-Richtung	Einzellast Stab Komme	ten am Stab entar a [m]	F _x [kN]	F _z [kN]
Einw. Gk (a,b) Einw. Qk. N (c) Einw. Qk. W (d,e) Einw. Qk. S (f,g)) 1) 1	0. 95 0. 95 0. 95 0. 95 0. 95	-1.30 3.97 -0.34	18. 36 10. 48 -2. 74 4. 70
(a)	aus Pos. R	R1 A-Hx-Gk-max	-1.301 =	-1.30 kN
(b)	aus Pos. R	R1 A-Vz-Gk-max	18. 360 =	18.36 kN
(c)	aus Pos. R	R1 A-Vz-Qk.N-max	10.479 =	10.48 kN
(d)	aus Pos. R	R1 A-Hx-Qk.W-max	3. 968 =	3. 97 kN
(e)	aus Pos. R	R1 A-Vz-Qk.W-max	-2.741 =	-2.74 KN
(f)	aus Pos. R	R1 A-Hx-Qk.S-max	-0.335 =	-0.34 KN
(g)	aus Pos. R	R1 A-Vz-Qk.S-max	4.698 =	4. 70 kN

Eigengewicht am Stab

Ei gengewi cht

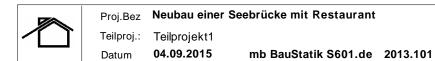
Neubau einer Seebrücke mit Restaurant Proj.Bez

Seite

67 UZ2

Datum

Teilproj.: Teilprojekt1 04.09.2015


mb BauStatik S601.de 2013.101

Projekt

Position

Seebrücke

Kombi nati onen	Komb	oi nati onsbi I du	ung nach DIN EN	1990
ständi g/vorüberg.	<u>Ek</u>	Σ (γ * ψ * EW) 1.35 * Gk		
3	2	1. 35*Gk	+1.50*Qk.N (1)	
	3 4	1. 35*Gk 1. 35*Gk	+1. 50*Qk. W +1. 50*Qk. S	
	5	1. 35*Gk	+1.50*Qk.N (1)	+0. 75*Qk. S
	6 7	1. 35*Gk 1. 00*Gk	+1.50*Qk.W	+0. 75*Qk. S
	8	1. 00 GK 1. 00*Gk	+1.50*Qk.N	
	9	1.00*Gk	(1) +1.50*Qk.W	
	10 11	1. 00*Gk 1. 00*Gk	+1.50*Qk.S +1.50*Qk.N	+0. 75*Qk. S
	12	1. 00*Gk	(1) +1.50*Qk.W	+0.75*Qk.S
	13	1. 35*Gk	+1.50*Qk.N (1)	+0.90*Qk.W
	14 15	1. 35*Gk 1. 00*Gk	+0.90*0k.W +1.50*0k.N	+1.50*Qk.S +0.90*Qk.W
	16	1. 00*Gk	(1) +0.90*Qk.W	+1. 50*Qk. S
	17	1. 35*Gk	+1. 05 *Qk. N (1)	+1.50*Qk.W
	18	1. 35*Gk	+1. 05*Qk. N (1)	+1.50*Qk.S
	19	1. 35*Gk	+1.05*Qk.N	+0.90*Qk.W
	0.0	+1.50*Qk.S	(1)	4 50+01 W
	20	1. 00*Gk	+1.05*Qk.N (1)	+1.50*Qk.W
	21	1. 00*Gk	+1. Ó5*Qk. N (1)	+1. 50*Qk. S
	22	1. 00*Gk	+1. Ó5*Qk. N (1)	+0.90*Qk.W
	23	+1.50*Qk.S 1.35*Gk	+1. 05*Qk. N	+1.50*Qk.W
	20	+0. 75*Qk. S	(1)	THE COLUMN
	24	1. 00*Gk	+1.05*Qk.N	+1.50*Qk.W
	25	+0. 75*Qk. S	(1)	
quasi -ständi g	25 26	1. 00*Gk 1. 00*Gk	+0.60*Qk.N (1)	
Bemschni ttgrößen	Beme	essungsschni ti	tgrößen Theorie	I. Ordnung
<u>Grafik</u>	Schr	nittgrößen (Un	mhüllende)	
Kombi nati onen	N _d [k	(N]	M _{y,d} [kNm]	V _{z,d} [kN]
	_			30.3 29.7

Seite Position

68 UZ2

Projekt Seebrücke

|--|

Schnittgrößen (Umhüllende)

	x [m]	N _{d, min} N _{d, max} [kN]	Ek Ek	My, d, mi n My, d, max 「kNm]	Ek Ek	V _{z, d, min} V _{z, d, max} 「KN]	Ek Ek
1	0.00	-2. 26	4	0.00	-	10. 23	9
		4. 65	9	0.00	_	30.34	5
	0. 95	-2. 26	4	9. 49	9	9.74	9
		4. 65	9	28. 51	5	29.68	5
	0. 95	0.00	-	9. 49	9	-14.35	5
		0.00	-	28. 51	5	-4.51	9
	2.85	0.00	-	0.00	-	-15.66	5
		0.00	-	0.00	-	-5.48	9

Bem. -verformungen

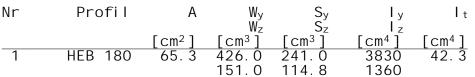
Bemessungsverformungen Theorie I. Ordnung

Tabel I e

Verformungen (Umhüllende)

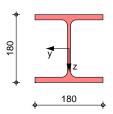
1

Х	Wz,d,min		Wz, d, max		Wx, d, min		₩x,d,max	
[m]	[mm]		[mm]		[mm]		[mm]	
0.00	0.00	_	0.00	_	0.00	_	0.00	_
1. 31	1. 00	25	1. 33	26	0.00	_	0.00	-
1.43	0. 99	25	1. 31	26	0.00	_	0.00	-
2.85	0.00	_	0.00	_	0.00	_	0.00	_


Mat. /Querschni tt

Material - und Querschnittswerte nach DIN EN 1993

Materi al


Querschni tt

Grafi k

Querschnittsgrafik [mm]

M 1:10

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach

Nachweis E-E

Nachweis der Biege- und Querkrafttragfähigkeit

Abs. 6.2

Ek $N_{x,d}$

η

Stab 1

[N/mm²] [kNm] [kN] 28. 51 67.97

Proj. BezNeubau einer Seebrücke mit RestaurantSeite69Teilproj.:Teilprojekt1PositionUZ2

Projekt

Seebrücke

<u>Nachweise (GZG)</u> Nachweise im Grenzzustand der

Gebrauchstauglichkeit nach DIN EN 1993

<u>Verformungsnachweis</u> max. Verformungen

04.09.2015

Datum

mb BauStatik S601.de 2013.101

<u>Auflagerkräfte</u> Charakteristische Auflagerkräfte (global)

Char. Auflagerkr. Aufl. $F_{x,k,min}$ $F_{x, k, max}$ $F_{z,k,min}$ $F_{z, k, max}$ [kN] -1.30 [kN] 1.30 [kN] 12.97 [kN] 12. 97 Einw. Gk 0.00 0.00 В 6.85 6.85 6. 99 6. 99 Einw. Qk. N Ā 0.00 0.00 В 0.00 3.49 3.49 0.00 3. 97 3. 97 Einw. Qk. W Ā -1.83 -1.83 -0.91 В 0.00 0.00 -0.91 Einw. Qk. S Ā -0.34 -0.343.13 3. 13 В 0.00 0.00 1.57 1.57

<u>Zusammenfassung</u> Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachweis $$\eta$$ [-] Nachweis E-E $$0 \mbox{K} \mbox{ 0. 29}$

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite

Teilproj.: Teilprojekt1 04.09.2015 Datum

mb BauStatik S312.de 2013.101

Position Projekt

E1 Seebrücke

70

Pos. E1

Unterzug - Stahträger

System

Durchl aufträger

M 1:65

System z-Richtung

Abmessungen Mat./Querschnitt

Feld	[m]	Lage [°]	Achsen	Materi al	Profil
KI	1. 80	0.0	fest	S 235	HEB 140
1	3.85	0.0	fest		
Kr	1 80	\cap \cap	fact		

Aufl ager

Lager	Х	b	Art $K_{T,z}$	
	[m]	[cm]	[kN/m]	[kNm/rad]
A	1.80	20. 0	fest	frei
В	5. 65	20. 0	fest	frei

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk

Ständige Einwirkungen

Kategorie C - Versammlungsräume Qk. N

fw

Erläuterungen

feldweise (fw)

Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.

<u>Bel astungen</u>

Belastungen auf das System

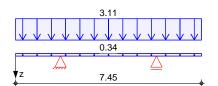
Ei gengewi cht

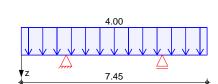
Fel d kl-kr

Gk

Profi I

HEB 140


Qk. N



Grafik

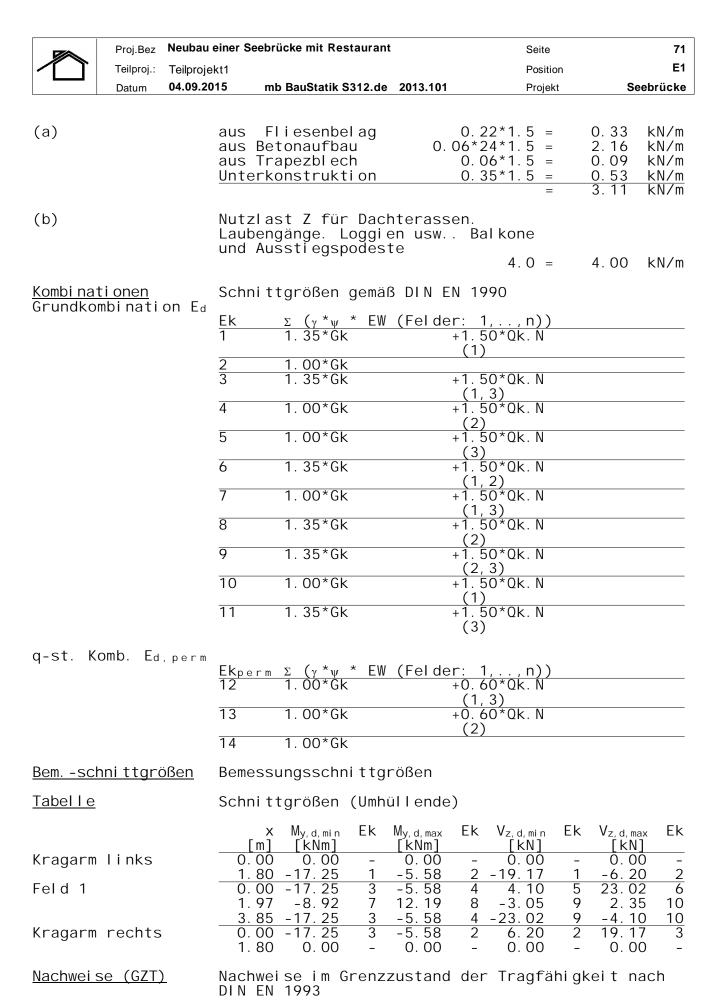
Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen

Streckenlasten

in z-Richtung

GI ei chl asten Feld Komm


Komm.	a	S	Qi i	Q re	ϵ
	[m]	[m]	[kN/mˈ]	[kN/mˈ]	[cm]
Ei gengew	0.00	7. 45		0.34	0.0
0 0	0.00	7.45		3. 11	0.0
	0.00	7. 45		4.00	0.0

Einw. Gk

Einw. Qk. N

 \overline{KI}

0.00

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite

72 E1

Datum

Teilproj.: Teilprojekt1 04.09.2015

mb BauStatik S312.de 2013.101

Position Projekt

Seebrücke

Nachweis E-E Abs. 6.2	Nachweis der B x Ek QS/ Pkt	M _{y, d}	ıerkrafttı V _{z, d}	σ_d $ au_d$	it η
	[m]	[kNm]	[kN]	$\sigma_{V,d} = [N/mm^2]$	[-]
Kragarm links	(L = 1.80 m) 0.69 1 1/2	-2.54	-7.36	7. 75 8. 05 15. 95	0. 07
	1.80 1 1/3	-17. 25	-19. 17	79. 86 5. 69 80. 46	0. 34*
Feld 1	(L = 3.85 m) 0.00 6 1/3	-17. 25	23. 02	79. 86 6. 83 80. 73	0.34*
	1.93 8 1/3	12. 20	0. 00	56. 48 0. 00 56. 48	0. 24
	3.85 9 1/3	-17. 25	-23. 02	79. 86 6. 83 80. 73	0. 34
Kragarm rechts	(L = 1.80 m) 0.00 3 1/3	-17. 25	19. 17	79. 86 5. 69 80. 46	0.34*
	1.11 3 1/2	-2.54	7. 36	7. 75 8. 05 15. 95	0. 07
<u>Stabilität</u>	Nachweis der S	Stabilität			
Festhaltungen Kragarm links Feld 1 Kragarm rechts	x-Koordinaten 1.80 GL 0.00 GL, 3.85 0.00 GL		el danfang		
Globale Beiwerte	Bezugsschl ankh Träghei tsrad.		λ: i _{f,} ;	$\frac{1}{2} = 93.91$ $\frac{3}{2} = 3.80$	CM
Vereinfachter Nachweis Kragarm links	Ek Abs. L _c [m] 1 1 1.80	k _c vorhλ 0.60 0.60	zuιλ 1. 52	χ max M [kNm] 17.25	η
Feld 1	3 1 3.85	0. 76 0. 82	1. 52	17.25	0.54*
Kragarm rechts	3 1 3.60	0.60 0.60	1. 52	17. 25	0.40*
Nachweise (GZG)	Nachweise im G Gebrauchstaugl			1993	
<u>Verformungsnachweis</u>	max. Verformun x Ek	W_{z}	Wres	W _{zul}	η
Kragarm links Feld 1	[m] 0.00 12 1.93 12	[mm] 8.11 2.42	[mm] 8.11 2.42	[mm] 12.00 12.83	0. 68 0. 19

Proj.BezNeubau einer Seebrücke mit RestaurantSeite73Teilproj.:Teilprojekt1PositionE1Datum04.09.2015mb BauStatik S312.de2013.101ProjektSeebrücke

	x Ek	W_z	Wres	W_{zul}	η
	[m]	[mm]	[mm]	[mm]	[-]
Kragarm rechts	1.80 12	8.11	8. 11	12.00	0. 68

<u>Auflagerkräfte</u> Charakteristische und Bemessungsauflagerkräfte

Char. Auflagerkr.	Aufl.	F _{z, k, mi n}	F _{z,k,max}
Einw. Gk	A	[kN] 12.82	[kN] 12.82
	В	12. 82	12. 82
Einw. Qk.N	A	-1. 68	16. 58
	В	-1. 68	16. 58
Bemauflagerkräfte	Aufl.	F _{z,d,min} EK	F _{z, d, max} EK
	·	[kN]	[kN]
Komb. 510	Α	10. 30 5	42.19 6
	В	10 30 10	42 19 9

<u>Zusammenfassung</u> Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld	X		η
		[m]		[-]
Nachweis E-E	Kragarm links	1.80	OK	0.34
Stabilität	Felď 1	1.80	ΟK	0.54

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachwei s	Feld	Х		η
		[m]		[-]
Verformung	Kragarm rechts	1.80	OK	0. 68

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite Teilproj.:

04.09.2015

Position

E2

74

Datum

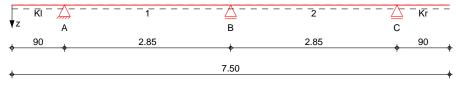
Teilprojekt1

mb BauStatik S312.de 2013.101

Projekt

Seebrücke

Pos. E2


Unterzug - Stahträger

System

Durchl aufträger

M 1:65

System z-Richtung

Abmessungen Mat./Querschnitt

Feld	[m]	Lage [°]	Achsen	Materi al	Profil
KI	0. 90	0.0	fest	S 235	I PE 140
1-2	2.85	0.0	fest		
Kr	0. 90	0.0	fest		

Aufl ager

Lager	X	b	$Art K_{T,z}$	K _{R, y}
	[m]	[cm]	[kN/m]	[kNm/rad]
A	0. 90	20. 0	fest	frei
В	3.75	20.0	fest	frei
С	6.60	20. 0	fest	frei

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk

Ständige Einwirkungen

Kategorie C - Versammlungsräume Qk. N

fw

Erläuterungen

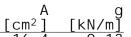
feldweise (fw)

Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.

<u>Bel astungen</u>

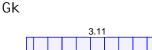
Belastungen auf das System


Ei gengewi cht

<u>Grafik</u>

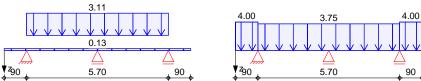
Profil

IPE 140



4.00

0.0


Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen

Ei gengew

Qk. N

<u>Streckenlasten</u> in z-Richtung

Gleichlasten Feld Komm.

а qui cm] [m][m] [kN/m]kN/m] 0.13 0.00 7. 50 0.0 5.70 0.00 3.11 5. 70 3.75 0.0 4.00 0.0

Einw. Gk

(a) Einw. Qk. N 1 0.00 (b) (c) KI 0.00 0.90 0.90 (c) Kr 0.00

 \overline{KI}

Bauplanungsbüro Prudlik-Dorfstraße 47a-14822 Gömnigk-Tel.:033844/51073

Proj.Bez Neubau Teilproj.: Teilproje	einer Seebrücke mit kt1	Restaurant	Seite Position	1
Datum 04.09.2 0		tik S312.de 2013.1		
			,	
(a)	aus Fliese aus Betonau aus Trapezb Unterkonstr	fbau (Lech	0. 22*1. 5 = 0. 06*24*1. 5 = 0. 06*1. 5 = 0. 35*1. 5 =	0.33 kN 2.16 kN 0.09 kN 0.53 kN 3.11 kN
			_	5. 11 KN
(b)	Nutzlast C1 Restaurants	für Schulrä	ume. Cafes.	
			3.0 =	
	Trennwandzu	schl ag	0.75 =	0.75 kN 3.75 kN
				0. 70 KN
(c)		für Dachteras . Loggien us:		
	und Ausstie			
			4.0 =	4.00 kN
<u>Kombi nati onen</u>	Schni ttgröß	en gemäß DIN	EN 1990	
Grundkombination E _d	Εκ Σ (γ	*,, * FW (FAL	der: 1 n))	
	1 1.35	*Gk	der: 1,,n)) +1.50*Qk.N	
	2 1.00	*Gk	(1)	
	2 1.00 3 1.35	*GK	+1.50*Qk.N	
	4 1.00	*Gk	(1, 3) +1.50*Qk.N	
			(2, 4) +1. 50*Qk. N	
			(3)	
	6 1. 35	*Gk	+1.50*Qk.N	
	7 1.00	*Gk	(1, 2, 4) +1.50*Qk.N	
	8 1.35	*Gk	(1, 3) +1.50*Qk.N	
			(2, 4) +1.50*Qk. N	
	9 1.35	^GK	+1.50^QK.N (3)	
	1.00	*Gk	+1.50*Qk.N	
	11 1.35	*Gk	(1, 2, 4) +1.50*Qk. N	
	12 1.00	*CL	(2, 3) +1.50*Qk.N	
			(1, 4) +1. 50*Qk. N	
	13 1.35	*Gk	+1.50*Qk.N (2)	
	14 1.00	*Gk	+1.50*Qk.N	
	15 1.35	*Gk	(1, 3, 4) +1.50*Qk.N	
			(1, 3, 4) +1. 50*Qk. N	
	16 1.00	*Gk	+1.50*Qk.N (2)	
	17 1. 35	*Gk	+1.50*Qk.N	
	18 1.00	*Gk	(4) +1.50*Qk.N	
	.5 1.00		(4)	

Ekperm	Σ (γ * ψ *	EW (Felder: 1,,n)) +0.60*0k N
19	1. 00*Gk	+0.60*Qk.N
		(1, 3)
20	1. 00*Gk	+0. 60*Qk. N

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite Position

90.67

0.42

0.39

0. 93

76 E2

Teilproj.: Datum

Teilprojekt1 04.09.2015

mb BauStatik S312.de 2013.101

Projekt

Seebrücke

 $\frac{\text{Ekperm }\Sigma \ \left(\gamma^*\psi^* \ \text{EW (Felder: 1,..,n)}\right)}{21 \qquad 1.00\text{*Gk}}$

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

	X [m]	My, d, min	Ek	My, d, max [kNm]	Ek V _{z, d,}		V _{z, d, max} [kN]	Ek
Kragarm links	0.00	0. 00 -2. 50	 - 1	0. 00 -0. 05	- 0. 2 -5.	00 -	0.00 -0.12	
Feld 1	0. 90 0. 00 1. 20 2. 85	-2. 50 -0. 55 -10. 11	1 3 7 11	-0. 05 -0. 05 7. 05 -2. 04	4 2. 8 -1. 12 -17.	48 5 54 9	13. 00 1. 15 -4. 45	2 6 10 12
Feld 2	0. 00 1. 65 2. 85	-10. 11 -0. 55 -2. 50	11 4 8	-2. 04 7. 05 -0. 05	12 4. 3 -1. 7 -13.	45 12 15 14	17. 76 1. 54 -2. 48	11 13 16
Kragarm rechts	0. 00	-2. 50 0. 00	6 -	-0. 05 0. 00	2 0.	12 2	5. 56	6
Nachweise (GZT)	Nachwei DIN EN		renz	zustand	der Tra	gfähi gk	eit nad	ch
Nachweis E-E Abs. 6.2	Nachwei x	s der B Ek QS/ Pkt	,	- und QI M _{y, d}	uerkraft V _{z, d}	-	σ_d τ_d	η
	[m]			[kNm]	[kN]	[N/mm ²	v, d ²]	[-]_
Kragarm links	(L = 0. 0. 90	90 m) 1 1/2		-2.50	-5. 56	32. 3 2. 4 32. 6	49	14*
Feld 1	(L = 2. 0.00	85 m) 6 1/3		-2.50	13. 00	25. 9 18. 8 41. 6	82	18
	1. 20	8 1/2		7. 05	-0.06	91. 2 0. 0 91. 2	23 0. 03	39
	1. 29	8 1/2		7. 01	-0. 93		67 0. 42	39
	2. 41	9 1/2		-3.85	-6. 83	49. 8 3. 0 50.	82 0. 07	21
	2. 85	11 1/2		-10. 11	-17. 76	130. 7. 9 131. 4	77 0. 97	56*
Feld 2	(L = 2. 0.00	85 m) 11 1/2		-10. 11	17. 76	130. 7. 9 131. 4	97	56*
	0.44	13 1/2		-3.85	6. 83	49. 8 3. 9 50.	82 O. 07	21

7. 01

1/2

1. 56

3

77

E2

Seebrücke

	Х	Ek	QS/	My, d	$V_{z,d}$	$\sigma_{\sf d}$	η
	[m]		Pkt	[kNm]	[kN]	$ au_{ m d} \ \sigma_{ m V,d} \ bigcap [{ m N/mm}^2 igr]$	[-]
	1. 65	3	1/2	7. 05	0.06	90. 67 91. 23 0. 03	0. 39
	2. 85	15	1/3	-2. 50	-13.00	91. 23 25. 93 18. 82 41. 66	0. 18
Kragarm rechts	(L = 0 0.00	. 90 6	m) 1/2	-2. 50	5. 56	32. 35 2. 49 32. 63	0. 14*
<u>Stabilität</u>	Nachwe	isc	ler Sta	abilität			
Festhaltungen Kragarm links Feld 1 Feld 2 Kragarm rechts	x-Koor 0. 90 G 0. 00 G 0. 00 G 0. 00 G	L L, 2 L, 2 L	2. 85 GL 2. 85 GL		l danfang		
Globale Beiwerte				er Last: beiwert:		p = -7.00 $1 = 1.10$	
Zwi schenwerte	X [m]	Ek	KL _y Γ - 1	N _{cr} [kN] [ci	$\begin{bmatrix} C^2 & C \\ m^2 \end{bmatrix} = \begin{bmatrix} - \end{bmatrix}$		λ̄ _{LT} [-]
Kragarm links	(Absch 0.90	ni tt 1	LJ	r = 1.80 m			0. 69
Feld 1	(Absch 2.85	ni tt 11		r = 2.85 m 114.57) 217 2.25	5 25.09	0. 91
Feld 2	(Absch 0.00	ni tt 11	3: L _c KL b	r = 2.85 m) 217 2.25	5 25.09	0. 91
Kragarm rechts	(Absch 0.00			r = 1.80 m		2 43.31	0. 69
Nachweis	X [m]	Ek	M _y [kNm	,,d M _{pl,y,d}	χ _L τ Γ – 1 Ι	f χ _{LTmod}	η Γ_1
Kragarm links	(Absch 0.90	ni t t 1	: 1: L _c	r = 1.80 m)	80 1.00	0. 13*
Feld 1	(Absch 2.85	ni tt 11	2: Lc -10.1	r = 2.85 m		84 0.90	0. 59*
Feld 2				r = 2.85 m $1 = 18.89$		84 0.90	0. 59*
Kragarm rechts	(Absch 0.00	ni tt 6	4: L _c -2.5	r = 1.80 m $r = 1.80 m$) 0.87 0.	80 1.00	0. 13*
Nachweise (GZG)				enzzustand o chkeit nach		1993	

Proj.BezNeubau einer Seebrücke mit RestaurantSeite78Teilproj.:Teilprojekt1PositionE2Datum04.09.2015mb BauStatik S312.de2013.101ProjektSeebrücke

<u>Verformungsnachweis</u>	max.	Verformungen

	X	LΚ	Wz	Wres	Wzul	η
	[m]		[mm]	[mm]	[mm]	[-]
Kragarm links	0.00	20	2. 58	2. 58	6.00	0.43
Felď 1	1. 29	20	2. 30	2. 30	9. 50	0.24
Feld 2	1. 56	19	2.30	2.30	9. 50	0. 24
Kragarm rechts	0. 90	19	2. 58	2.58	6.00	0.43

<u>Auflagerkräfte</u> Charakteristische und Bemessungsauflagerkräfte

Char. Auflagerkr.	Aufl.	F _{z, k, min}	$F_{z, k, max}$
Finw Ck	Λ	[kN] 3. 60	[kN] 3.60
Einw. Gk	A R	3. 60 11. 47	3. 60 11. 47
	C	3.60	3. 60
Einw. Qk.N	A	-0. 67	9. 13
	В	-1.71	13. 36
	С	-0. 67	9. 13

Bemauflagerkräfte	Aufl.	F _{z, d, min} [KN]	EK	F _{z,d,max} [kN]	EK
Komb. 516	A B	Ž. 60 8. 91 2. 60	5 12	18. 55 35. 52 18. 55	6 11 15

<u>Zusammenfassung</u> Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachwei s	Feld	X [m]	η [-]
Nachweis E-E Stabilität	Feld 1 Feld 1		K 0.56

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachwei s	Feld	Χ		r
		[m]		[-]
Verformung	Kragarm rechts	0. 90	OK	0.43

 Proj.Bez
 Neubau einer Seebrücke mit Restaurant
 Seite
 79

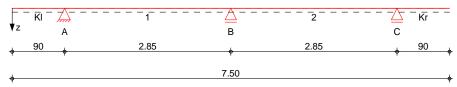
 Teilproj.:
 Teilprojekt1
 Position
 E3

Teilproj.: Teilprojekt1
Datum **04.09.2015**

mb BauStatik S312.de 2013.101

Position Projekt

Seebrücke


fw

Pos. E3 Unterzug - Stahträger

<u>System</u> Durchl aufträger

System z-Richtung

M 1:65

Abmessungen Mat./Querschnitt

Feld	[m]	Lage [°]	Achsen	Materi al	Profil
KI	0. 90	0.0	fest	S 235	IPE 140
1-2	2. 85	0.0	fest		
Kr	0. 90	0.0	fest		

Aufl ager

Lager	X	b	Art	$K_{T,z}$	K _{R, y}
	[m]	[cm]	[k	(N/m]	[kNm/rad]
A	0. 90	20. 0		fest	frei
В	3.75	20. 0		fest	frei
С	6.60	20. 0		fest	frei

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N Ständige Einwirkungen

Kategorie C - Versammlungsräume

Erläuterungen feldweise (fw)

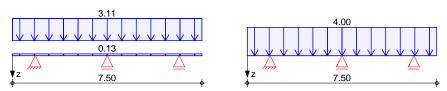
Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.

<u>Belastungen</u> Belastungen auf das System

Ei gengewicht Fel d

Qk. N


qui

Grafik

Belastungsgrafiken (Einwirkungsbezogen)

а

Einwirkungen Gk



Streckenlasten in z-Richtung

Einw. Gk

Einw. Qk. N

Gleichlasten Feld Komm.

Proj.Bez Neubau	einer Seebrücke mit Restaurant	Seite	80
Teilproj.: Teilproje		Posit	
Datum 04.09.20	mb BauStatik S312.de	2013.101 Proje	kt Seebrücke
(a)	aus Fliesenbelag aus Betonaufbau aus Trapezblech Unterkonstruktion	0. 22*1. 5 = 0. 06*24*1. 5 = 0. 06*1. 5 = 0. 35*1. 5 =	2.16 kN/m 0.09 kN/m
(b)	Nutzlast Z für Dach Laubengänge. Loggie und Ausstiegspodest	n usw Balkone	= 4.00 kN/m
Kombi nati onen	Schnittgrößen gemäß	DIN EN 1990	
Grundkombination E _d		(Felder: 1,,n)) +1.50*Qk.N (1)	
	2 1. 00*Gk 3 1. 35*Gk	+1.50*Qk.N	
	4 1. 00*Gk	(1, 3) +1.50*Qk.N	
	5 1. 00*Gk	(2, 4) +1.50*Qk.N	
	6 1. 35*Gk	(3) +1.50*Qk.N	
		+1. 50 QK. N (1, 2, 4) +1. 50*Qk. N	
	7 1.00*Gk	+1.50^Qk.N (1,3) +1.50*Qk.N	
	8 1. 35*Gk	(2, 4)	
	9 1. 35*Gk	+1.50*Qk.N (2,3)	
	10 1. 00*Gk	(2, 3) +1. 50*Qk. N (1 4)	
	11 1. 35*Gk	(1, 4) +1. 50*Qk. N (1, 3, 4)	
	1. 00*Gk	+1.50*Qk.N	
	13 1. 35*Gk	(2) +1.50*Qk.N (4)	
q-st. Komb. Ed, perm	<u>Ekperm Σ (γ*ψ * EW</u> 14 1.00*Gk	(Felder: 1,,n)) +0.60*Qk.N	
	15 1. 00*Gk	(1, 3) +0. 60*Qk. N	
	16 1. 00*Gk	(2, 4)	
Bemschni ttgrößen	Bemessungsschnittgr	ößen	
<u>Tabel I e</u>	Schnittgrößen (Umhü	II ende)	
	x My,d,min Ek 1 [m] [kNm]	M _{y, d, max} Ek V _{z, d, min} [kNm] [kN]	Ek V _{z, d, max} Ek [kN]
Kragarm links	0.00 0.00 -	0.00 - 0.00	- 0.00 -
Feld 1	0.00 -4.20 3	-1. 31 2 -9. 33 -1. 31 4 3. 08	1 -2.91 2 5 14.36 6
Feld 2	1. 30 -1. 09 7 2. 85 -9. 64 9 0. 00 -9. 64 9 1. 55 -1. 09 4	6. 75 8 -1. 47 -1. 41 10 -17. 53 -1. 41 10 3. 79 6. 75 3 -1. 22	9 1. 22 10 9 -3. 79 10 10 17. 53 9 10 1. 47 9

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite Position

81 **E**3

Datum

Teilproj.: Teilprojekt1 04.09.2015

mb BauStatik S312.de 2013.101

Projekt

54.79

Seebrücke

Kragarm rechts	x [m] 2.85 0.00 0.90	[k -4 -4	d, mi n (Nm] 20 20	8 6 -	M _{y, d, max} [kNm] -1.31 -1.31 0.00	Ek V _{z, d, mi} [kN 7 -14.3 2 2.9 - 0.0] [6 11 -3 1 2 9	d, max Ek kN]
Nachweise (GZT)	Nachwei DIN EN	se 199	im Gr 93	renz	zustand	der Trag	fähi gkei t	nach
Nachweis E-E Abs. 6.2	Nachwei x	s d Ek	ler Bi QS/ Pkt	ege	- und Q M _{y, d}	uerkraftt V _{z,d}	σ_d $ au_d$	eit η
	[m]				[kNm]	[kN]	$\sigma_{V,d}$ [N/mm ²]	[-]
Kragarm links	(L = 0. 0.90	90 1	m) 1/2		-4. 20	-9.33	54. 31 4. 19 54. 79	0. 23*
Feld 1	(L = 2. 0.00	85 6	m) 1/3		-4. 20	14. 36	43. 53 20. 79 56. 50	0. 24
	1. 28	8	1/2		6. 75	0.00	87. 35 0. 00 87. 35	0. 37
	1. 34	8	1/2		6. 73	-0. 62	87. 11 0. 28 87. 11	0. 37
	2. 23	3	1/2		-2. 58	-4.14	33. 36 1. 86 33. 51	0.14
	2. 85	9	1/2		-9.64	-17. 53	124. 71 7. 87 125. 46	0. 53*
Feld 2	(L = 2.	85	m)					
. 6. 4 2	0.00	9	1/2		-9.64	17. 53	124. 71 7. 87 125. 46	0.53*
	0. 62	8	1/2		-2.58	4. 14	33. 36 1. 86 33. 51	0. 14
	1. 51	3	1/2		6. 73	0. 62	87. 11 0. 28 87. 11	0. 37
	1. 57	3	1/2		6. 75	0.00	87. 35 0. 00 87. 35	0. 37
	2. 85	11	1/3		-4. 20	-14. 36	43. 53 20. 79 56. 50	0. 24
Kragarm rechts	(L = 0.	90	m)					
<u> </u>	0.00		1/2		-4. 20	9. 33	54. 31 4. 19	0. 23*

Einw. Qk. N

Neubau einer Seebrücke mit Restaurant Proj.Bez

Seite

82 **E**3

04.09.2015 Datum

Teilproj.: Teilprojekt1

mb BauStatik S312.de 2013.101

Position Projekt

Seebrücke

<u>Stabilität</u>	Nachweis der Stabilität	
Festhaltungen Kragarm links Feld 1 Feld 2 Kragarm rechts	x-Koordinaten [m] bzgl. Feldanfang 0. 90 GL 0. 00 GL, 2. 85 GL 0. 00 GL, 2. 85 GL 0. 00 GL	_
	GL : Gabellager	
Globale Beiwerte	Angriffspunkt der Last: $z_p = -7.00$ C Teilsicherheitsbeiwert: $\gamma_{m, 1} = 1.10$	m
Zwischenwerte		LT
Kragarm links	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Feld 1	(Abschnitt 2: L _{cr} = 2.85 m) 1.28 8 KL b 114.57 217 1.21 16.22 1.1	_
Feld 2	(Abschnitt 3: L _{cr} = 2.85 m) 1.57 3 KL b 114.57 217 1.21 16.22 1.1	3
Kragarm rechts	(Abschnitt 4: L _{cr} = 1.80 m) 0.00 6 KL b 287.22 113 2.82 43.31 0.6	9
Nachweis	x Ek My, d Mpl, y, d χLT f χLTmod η	
Kragarm links	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Feld 1	(Abschnitt 2: L _{cr} = 2.85 m) 1.28 8 6.75 18.89 0.62 0.97 0.64 0.56	*
Feld 2	(Abschnitt 3: L _{cr} = 2.85 m) 1.57 3 6.75 18.89 0.62 0.97 0.64 0.56	*
Kragarm rechts	(Abschnitt 4: L _{cr} = 1.80 m) 0.00 6 -4.20 18.89 0.87 0.80 1.00 0.22	*
Nachweise (GZG)	Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1993	
Verformungsnachweis	max. Verformungen	
•		η 1
Kragarm links	0.00 15 1.73 1.73 6.00 0.2	9
Feld 1 Feld 2	1. 34 15 2. 07 2. 07 9. 50 0. 2 1. 51 14 2. 07 2. 07 9. 50 0. 2	2
Kragarm rechts	0. 90 14 1. 73 1. 73 6. 00 0. 2	9
<u>Aufl agerkräfte</u>	Charakteristische und Bemessungsauflagerkräfte	
Char. Auflagerkr.	Aufl. F _{z, k, min} F _{z, k, min}	
Einw. Gk	[kN] [kN] A 7.06 7.0	6
	B 10.14 10.1 C 7.06 7.0	

Datum 04.09.2 0	mb BauStatik S312.d	e 2013.101 P	Projekt	Seebrücke
	Aufl. B C	F _{z, k, min} [kN] -1.71 -0.71		F _{z, k, max} [kN] 14.25 9.44
Bemauflagerkräfte	Aufl.	F _{z,d,min} EK	F	F _{z, d, max} EK
Komb. 512	A B C	5. 99 5 7. 58 10 5. 99 12	;	23. 69 6 35. 07 9 23. 69 11
<u>Zusammenfassung</u>	Zusammenfassung de	er Nachweise		
Nachweise (GZT)	Nachweise im Grenz	zzustand der Trag	gfähi gkei	i t
	Nachwei s	Feld	x [m]	η Γ_ 1
	Nachweis E-E Stabilität	Feld 1 Feld 1	2. 85 1. 28	OK 0.53 OK 0.56
Nachweise (GZG)	Nachweise im Grenz	zzust. der Gebrau	uchstaug	lichkeit
	Nachweis Verformung	Feld Kragarm rechts	x [m] 0.90	η [-] OK 0.29

Proj.Bez Neubau einer Seebrücke mit Restaurant Seite 84 **E**4

Teilproj.: Teilprojekt1 04.09.2015 Datum

mb BauStatik S312.de 2013.101

Position Seebrücke Projekt

Pos. E4 Unterzug - Stahträger

Durchl aufträger System

System z-Richtung M 1:40

В 4.75

Abmessungen Mat./Querschnitt Fel d Achsen Material Profil Lage [m]fest S 235 HEB 200

Aufl ager

 $K_{R,\underline{y}}$ Art Lager Х h K_{T, z} [m][kN/m] [kNm/rad][cm] 0.00 20.0 fest frei В 20.0 4.75 fest frei

Ei nwi rkungen Einwirkungen nach DIN EN 1990: 2010-12

Gk

<u>Ständige Einwirkungen</u> Kategorie A - Wohn- und Qk. N fw

Aufenthal tsräume

Qk. W Windlasten LG 98 Qk. W (min/max Werte)

Qk. S Schnee- und Eislasten für Orte bis LG 99

 $NN + 1000 \, \text{m}$

(min/max Werte) Qk. S

Erläuterungen Gruppen (LG)

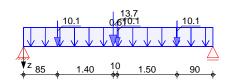
> Einwirkungen, die der gleichen Lastgruppe zugeordnet werden, können nicht gleichzeitig

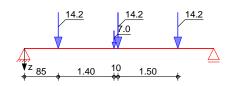
auftreten.

feldweise (fw)

Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.


<u>Bel astungen</u> Belastungen auf das System


Profil Ei gengewi cht Fel d [cm2]

HEB 200

Grafi k Belastungsgrafiken (Einwirkungsbezogen)

Qk. N Ei nwi rkungen Gk

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 85 **E**4 Teilproj.: Teilprojekt1 Position

04.09.2015 mb BauStatik S312.de 2013.101 Projekt

14.25

14.25

<u>6. 99</u>

3. 13

-1.83

0.0

0.0

0.0

0.0

0.0

Seebrücke

Qk. W

(a) (a) (a) (b)

(a)

Qk. S

Streckenl asten in z-Richtung Einw. Gk

Datum

Feld	Komm.	а	S	qı i	Q re	е
		[m]	[m]	[kN/mˈ]	[kN/mˈ]	[cm]
1	Ei gengew	0.00	4. 75		0. 61	0.0

Punktl asten in z-Richtung

Einw. Qk. W

Einw. Qk. S

(a)

Einw. Gk Einw. Qk. N

	Einzellasten Feld Komm.	а	Fz	е
		[m]	[kN]	[cm]
)	1	0.85	10. 14	0.0
)	1	2.35	10. 14	0.0
)	1	3.85	10. 14	0.0
)	1	2. 25	13.70	0.0
)	1	0.85	14. 25	0.0

2.35 (a) 3.85 (a) 2. 25 (b) 2. 25 (b) 2. 25 (b)

aus Pos. 'E3', Lager 'B' (Seite 82)

aus Pos. 'UZ2', Lager 'B', Faktor = (b) 2.00 (Sei te 69)

Kombi nati onen Grundkombination Ed Schnittgrößen gemäß DIN EN 1990

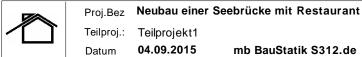
Ek	Σ (γ *ψ * EW	(Fel der: 1, , n))	
1	1. 00*Gk	+1.50*Qk.W	
2	1. 35*Gk	+1.50*Qk.N	
	+0. 75*Qk. S		
3	1. 00*Gk		
4	1. 35*Gk	+1.50*Qk.S	
5	1. 00*Gk	+1.50*Qk.N	
	+0.90*Qk.W		

q-st. Komb. Ed, perm

 $\Sigma (\gamma^* \psi^* \text{ EW (Felder: } 1, ..., n))$ 1. 00*Ġk 1. 00 GK 1. 00*Gk

Bem. -schni ttgrößen

Bemessungsschni ttgrößen


Tabel I e

Schnittgrößen (Umhüllende)

	X	My, d, min	ΕK	$M_{y,d,max}$	EK	$V_{z,d,min}$	Ek	$V_{z,d,max}$	ΕK
	[m]	[KNm]		[KNm]		[kN]		[kN]	
Feld 1	0.00	0.00	_	0.00	_	22.60	1	71. 60	2
	2. 25	35.09	1	109. 92	2	11. 08	1	34.68	2
	2. 25	35.09	1	109. 92	2	-3.82	4	5.66	5
	2. 35	35. 10	1	110. 25	2	-3.90	4	5.60	5
	4. 75	0.00	_	0.00	_	-68.85	2	-21.70	1

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

Seite Position

86 E4

Projekt

mb BauStatik S312.de 2013.101

Seebrücke

Nachweis E-E Abs. 6.2	Nachwe x	is d Ek		ge- und Qı M _{y, d}	uerkraftti V _{z, d}	ragfähi gke σ _d τ _d	it η
F 1 1 4	[m]	7.		[kNm]	[kN]	$\sigma_{V,d} = [N/mm^2]$	[-]
Feld 1	(L = 4 0.00	. 75	m) 1/1	0.00	71. 60	0.00 44.80 77.60	0. 33
	0.85	2	1/2	60. 56	70. 90	106. 25 11. 51 108. 11	0.46
	2. 25	2	1/2	109. 92	34. 68	192. 84 5. 63 193. 09	0.82*
	2. 35	2	1/2	110. 25	-31.80	193. 42 5. 16 193. 63	0. 82
	2. 36	2	1/2	109. 96	-31. 80	192. 91 5. 16 193. 12	0. 82
	3. 85	2	1/2	61. 63	-68. 10	108. 12 11. 05 109. 80	0. 47
	4. 75	2	1/1	0. 00	-68. 85	0. 00 43. 08 74. 62	0. 32
<u>Stabilität</u>	Nachwe	is d	er Sta	bilität			
Festhal tungen Feld 1	$\frac{x - Koord}{0.00 \text{ G}}$	L, 4	. 75 GL] bzgl. Fe	el danfang		
Globale Beiwerte				r Last: eiwert:	Z γm,	$c_p = -10.00$ $c_1 = 1.10$	CM
Zwi schenwerte	x [m]	Ek	KL _y Γ _ 1	N _{cr} [kN] [d	c^2 c^2 $[-]$		λ _{LT} [-]
Feld 1	(Abschi 2.35	ni tt 2	1: L _{cr} KL b	= 4.75 r 1837.22	m) 347 1.23		0. 68
Nachweis	x [m]	Ek	M _{y,} [kNm		χ∟⊤ Γ –]	f χ _{LTmod} [-] [-]	η Γ - 1
Feld 1	(Abschi 2.35	ni tt 2		= 4.75 r	n)	. 95 0. 92	0.87*
Nachweise (GZG)				nzzustand hkeit nach		1993	
<u>Verformungsnachweis</u>	max. V		rmunge	W_{z}	Wres	Wzul	<u>η</u>
Feld 1	[m] 2.36	7		[mm] 8.80	[mm] 8.80	[mm] 15.83	[-] 0.56

<u>Auflagerkräfte</u>

Charakteristische und Bemessungsauflagerkräfte

	Proj.Bez Neubau	einer Seebrücke mit Re	estaurant		Seite		87
	Teilproj.: Teilproje	kt1			Position		E4
	Datum 04.09.2 0	mb BauStatik	S312.de 2013.10	1	Projekt	Seebi	rücke
Char. A	ufl agerkr.	Aufl.		k,min KN]		F _{z,}	k, max kN]
Einw. G	k	Ā	24	. 04		24	. 04
Einw. Q	k. N	B A B	23	. 00		25	. 00 . 28 . 46
Einw. Q	k. S	B A				1	. 65
Einw. Q	k.W	<u>В</u> А В		. 96 . 87		I	. 48
Bemau	fl agerkräfte	Aufl.	F _{z, d, min} [KN]	EK		F _{z, d, max} [kN]	EK
Komb. 1	2	A B	22. 60 21. 70	1 1		71. 60 68. 85	2
Zusammer	nfassung	Zusammenfassu	ng der Nach	weise			
<u>Nachweis</u>	se (GZT)	Nachweise im	Grenzzustan	d der	Tragfähi gke	ei t	
		Nachwei s	Feld		x [m]		η Γ_1
		Nachweis E-E Stabilität	Feld 1 Feld 1		2. 25 2. 35	0K 0 0K 0	. 82 . 87
<u>Nachweis</u>	se (GZG)	Nachweise im	Grenzzust.	der G	ebrauchstauç	glichke	i t
		Nachwei s	Feld		X		η

Feld 1

Verformung

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite

Teilproj.: Datum Teilprojekt1 **04.09.2015**

mb BauStatik S312.de 2013.101

Position Projekt

Seebrücke

88 E5

<u>Pos. E5</u>

Unterzug - Stahträger

System

Durchl aufträger

System z-Richtung

M 1:40

Z 4.75

Abmessungen Mat./Querschnitt Feld I Lage Achsen Material Profil [m] [°] 1 4.75 0.0 fest S 235 HEB 200

Aufl ager

 $K_{R,\underline{y}}$ Art Lager Х h K_{T, z} [m][kN/m] [kNm/rad] [cm] 0.00 20.0 fest frei В 20.0 4.75 fest frei

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N Ständige Einwirkungen

Kategorie A - Wohn- und fw Aufenthaltsräume

Qk. W

Windlasten Qk.W LG 98 (min/max Werte)

Qk. S

Schnee- und Eislasten für Orte bis LG 99

 $NN + 1000 \, m$

Qk. S (min/max Werte)

Erläuterungen

Gruppen (LG)

Einwirkungen, die der gleichen Lastgruppe zugeordnet werden, können nicht gleichzeitig

auftreten.

feldweise (fw)

Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.

<u>Bel astungen</u>

Belastungen auf das System

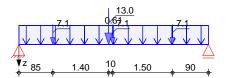
Ei gengewi cht

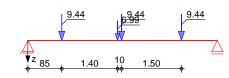
Fel d

Profil A

HEB 200

g [kN/m]


Grafi k


Bel astungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen

Gk

Qk. N

Proj.BezNeubau einer Seebrücke mit RestaurantSeite89Teilproj.:Teilprojekt1PositionE5

04.09.2015 mb BauStatik S312.de 2013.101

Position Projekt

Seebrücke

Qk.W

. W Qk. S

<u>Streckenlasten</u> in z-Richtung Einw. Gk

Datum

Fel d	Komm.	а	S	qui	q re	е
		[m]	[m]	[kN/m]	[kN/m]	[cm]
1	Ei gengew	0.00	4. 75		0. 61	0.0

<u>Punktlasten</u> in z-Richtung

Einw. Gk
Einw. Qk. N

Einzellasten Feld Komm. [kN] [m][cm] 0.85 7.06 0.0 (a) 35
 85 0.0 1 7.06 (a) 7.06 0.0 1 (a) 2.25 12.97 0.0 (b) 0.85 9.44 0.0 (a) 9.44 2.35 0.0 1 (a) 3.85 9.44 1 0.0 (a) 6.99 2. 25 0.0 (b) 2. 25 -1.83 0.0 (b) 2. 25 3. 13 0.0 (b)

Einw. Qk. W Einw. Qk. S

aus Pos. 'E3', Lager 'A' (Seite 82)

(a) (b)

aus Pos. 'UZ2', Lager 'A' (Seite 69)

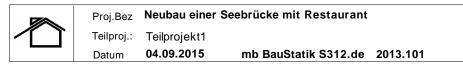
Kombinationen Grundkombination Ed Schnittgrößen gemäß DIN EN 1990

Ek	Σ (γ *ψ * EW	(Fel der: 1, , n))
1	1. 00*Gk	+1.50*Qk.W
2	1. 35*Gk	+1.50*Qk.N
	+0. 75*Qk. S	
3	1. 00*Gk	
4	1. 35*Gk	+1.50*Qk.S
5	1. 00*Gk	+1.50*Qk.N
	+0.90*Qk.W	

q-st. Komb. Ed, perm

Bem. -schni ttgrößen

Bemessungsschni ttgrößen


Tabel I e

Schnittgrößen (Umhüllende)

	X	My, d, min	ŁΚ	My, d, max	ŁΚ	$V_{z,d,min}$	ŁΚ	$V_{z,d,max}$	ŁΚ
	[m]	[KNm]		[KNm]		[kN]		[kN]	
Feld 1	0.00	0.00	_	0.00	_	17. 53	1	53.83	2
	2. 25	28.02	1	85.87	2	9. 10	1	28. 29	2
	2. 25	28.02	1	85.87	2	-5.50	4	0.69	5
	4. 75	0.00	-	0.00	_	-51.49	2	-16.77	1

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

Seite 90
Position E5
Projekt Seebrücke

Nachweis E-E Abs. 6.2	Nachwei x	s d Ek		e- und Qu M _{y,d}	ıerkraftt V _{z, d}	ragfähi gke σ _d τ _d	it η
	[m]			[kNm]	[kN]	$\sigma_{\text{V,d}}$ [N/mm 2]	[-]
Feld 1	(L = 4. 0.00	75 2	m) 1/1	0. 00	53. 83	0. 00 33. 69 58. 35	0. 25
	0. 85	2	1/2	45. 46	53. 13	79. 75 8. 62 81. 14	0. 35
	2. 25	2	1/2	85. 87	28. 29	150. 65 4. 59 150. 86	0.64*
	2. 35	2	1/2	85. 66	-25.82	150. 29 4. 19 150. 46	0. 64
	2. 36	2	1/2	85. 50	-25.82	149. 99 4. 19	0. 64
	3.85	2	1/2	46. 01	-50. 74	150. 17 80. 71 8. 23	0. 35
	4.75	2	1/1	0. 00	-51. 49	81. 96 0. 00 32. 22 55. 80	0. 24
<u>Stabilität</u>	Nachwei	s d	er Stab	ilität			
Festhaltungen Feld 1	x-Koord 0.00 GI	_, 4	. 75 GL	bzgl. Fe	el danfang		
Globale Beiwerte			nkt der heitsbe			$z_p = -10.00$ $z_1 = 1.10$	CM
Zwi schenwerte	x [m]	Ek	KL _y [-]	N _{cr} [kN] [c	c^2 c^2 $[-$	C ₁ M _{cr}] [kNm]	λ _{LT} [-]
Feld 1	(Abschi 2. 25	ni tt 2	1: L _{cr}	= 4.75 m 837.22	347 1.2		0.68
Nachwei s	x [m]	Ek	M _{y,d} [kNm]	M _{pl,y,d} [KNm]	χ _L Τ Γ –]	f χ _{LTmod} Γ-1 Γ-1	η [-]
Feld 1	(Abschi 2. 25	ni tt 2	1: L _{cr}		1)	. 95 0. 93	0. 68*
Nachweise (GZG)				zzustand keit nach		1993	
<u>Verformungsnachweis</u>	X	erfo Ek	rmungen	W_{z}	Wres	W_{zul}	ຼຸຖ
Feld 1	<u>[m]</u> 2.36	7		mm] . 93	[mm] 6.93	[mm] 15.83	0.44

<u>Auflagerkräfte</u>

Charakteristische und Bemessungsauflagerkräfte

	Proj.Bez Neubau	einer Seebrücke mit Rest	aurant		Seite		91
	Teilproj.: Teilproje	kt1			Position		E5
	Datum 04.09.20	mb BauStatik S3	312.de 2013.101		Projekt	Seeb	rücke
Char. Au	fl agerkr.	Aufl.	F _{z, k,}	min N]		F _{z,}	k, max
Einw. Gk		A	18.	98			3. 98
Einw. Qk	. N	B A B	18.	07		17	3. 07 7. 99 7. 32
Einw. Qk	. S	B A				1	. 65
Einw. Qk	. W	<u>В</u> А В	-0. -0.			1	. 48
Bemauf	l agerkräfte	Aufl.	F _{z, d, mi n} [KN]	EK		F _{z, d, max} [kN]	EK
Komb. 1.	. 2	A B	17. 53 16. 77	1 1		53. 83 51. 49	2
Zusammen:	<u>fassung</u>	Zusammenfassung	g der Nachw	ei se			
<u>Nachwei s</u>	e (GZT)	Nachweise im Gr	renzzustand	der Tra	gfähi gk	ei t	
		Nachwei s	Feld		X [m]		η Γ - 1
		Nachweis E-E Stabilität	Feld 1 Feld 1		2. 25 2. 25	OK C). 64). 68
Nachwei se	e (GZG)	Nachweise im Gr	renzzust. d	er Gebra	uchstau	glichke	ei t

Feld

Feld 1

Nachweis

Verformung

Neubau einer Seebrücke mit Restaurant Proj.Bez

Seite

92 **E6**

Teilproj.: 04.09.2015 Datum

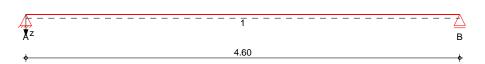
Teilprojekt1

mb BauStatik S312.de 2013.101

Position Projekt

Seebrücke

Pos. E6


Unterzug - Stahträger

System

Durchl aufträger

System z-Richtung

M 1:40

Abmessungen Mat./Querschnitt Fel d Lage Achsen Materi al Profil [m]S 235 HEB 180 4.60 fest

Aufl ager

 $K_{R,\underline{\ y}}$ Art $K_{T,\underline{z}}$ Lager Х h [cm] [kNm/rad] [m][kN/m] 0.00 20.0 fest frei В 20.0 4.60 fest frei

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N

<u>Ständige Einwirkungen</u> Kategorie A - Wohn- und fw

Aufenthal tsräume

Erläuterungen

feldweise (fw)

Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.

<u>Bel astungen</u>

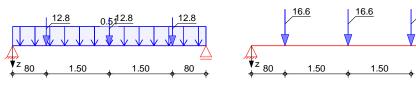
Belastungen auf das System

Ei gengewi cht

Fel d

Profi I HEB 180

16.6


Grafi k

Belastungsgrafiken (Einwirkungsbezogen)

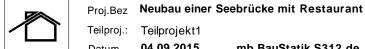
Ei nwi rkungen

Gk

Qk. N

Streckenlasten in z-Richtung Einw. Gk

Feld Komm. а qre [m][kN/m] [m][KN/m] [cm] 4. 60 Ei gengew 0.00 0.51 0.0


Punktl asten in z-Richtung Einzellasten Feld Komm.

Einw. Gk

 $\lceil m \rceil$ [kN] [cm] 0.80 12.82 0.0 (a) 2.30 12.82 0.0 1 (a) 3.80 12.82 0.0 (a)

а

Bauplanungsbüro Prudlik-Dorfstraße 47a-14822 Gömnigk-Tel.:033844/51073

Seite Position

93 **E6** Seebrücke

η

83.18

Projekt

04.09.2015 mb BauStatik S312.de 2013.101 Datum

Feld Komm.

[kN] [cm] 0.0

Einw. Qk. N

[m] 0.80 (a) 2. 30 3. 80 16. 58 0.0 (a) 16.58 1 0.0 (a)

(a)

aus Pos. 'E1', Lager 'A' (Seite 73)

Kombi nati onen Grundkombination Ed Schnittgrößen gemäß DIN EN 1990

Ek
$$\Sigma$$
 (γ * ψ * EW (Felder: 1,..,n))
1 1.00*Gk
2 1.35*Gk +1.50*Qk.N

q-st. Komb. Ed, perm

Ekperm Σ (
$$\gamma *_{\psi} *$$
 EW (Felder: 1,..,n))
3 1.00*Gk
4 1.00*Gk +0.30*Qk.N

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

Tabel I e

Schnittgrößen (Umhüllende)

	X	My, d, min	ΕK	$M_{y, d, max}$	EK	$V_{z,d,min}$	ΕK	$V_{z,d,max}$	ΕK
	[m]	[KNm]		[KNm]		[KN]		[kN]	
Feld 1	0.00	0.00	_	0.00	-	20.41	1	64.87	2
	0.80	16. 17	1	51. 68	2	20.00	1	64.32	2
	0.80	16. 17	1	51. 68	2	7. 18	1	22. 13	2
	2.30	26.36	1	84. 09	2	6.41	1	21.09	2
	2.30	26.36	1	84. 09	2	-21.09	2	-6.41	1
	3.80	16. 17	1	51. 68	2	-22.13	2	-7.18	1
	3.80	16. 17	1	51. 68	2	-64.32	2	-20.00	1
	4 60	\cap \cap	_	\cap \cap	_	_6/ 87	2	_20 /1	1

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

Nachweis E-E Abs. 6.2

Nachweis der Biege- und Querkrafttragfähigkeit QS/ x Ek $M_{y,d}$ $V_{z,d}$ σ_{d} Pkt τ_{d}

Feld 1

		1 1 1			va	
[m]			[kNm]	[kN]	$\sigma_{\text{V, d}} = [\text{N/mm}^2]$	[-]
(L = 4. 0.00	60	m) 1/1	0.00	64. 87	0. 00 48. 02	0. 35
		4 (0	F4 (0	(4.00	83. 18	
0. 80	2	1/2	51. 68	64. 32	121. 30 12. 54	0. 52
2. 30	2	1/2	84. 09	21. 09	123. 23 197. 40	0.84*
					4. 11 197. 53	
3. 80	2	1/2	51. 68	-64. 32	121. 30 12. 54	0. 52
					123. 23	
4. 60	2	1/1	0.00	-64. 87	0. 00 48. 02	0. 35

Proj.Bez Neubau einer Seebrücke mit Restaurant Seite 94 **E6** Teilproj.: Teilprojekt1 Position

04.09.2015 mb BauStatik S312.de 2013.101 Datum

Proiekt Seebrücke

Stabilität Nachweis der Stabilität

x-Koordinaten [m] bzgl. Feldanfang Festhal tungen

Feld 1 0.00 GL, 4.60 GL

GL: Gabellager

Globale Beiwerte Angriffspunkt der Last:

Teilsicherheitsbeiwert:

 $Z_p =$ -9.00 cm $\gamma_{m, 1} =$ 1.10

 M_{cr}

 χ LTmod

0.91

0.90*

 C^2 Zwi schenwerte [m][KN] [cm²][kNm]

Ek

= 4.60 mFeld 1 (Abschnitt Lcr

Χ

2.30 KL b 1332.12 1.20 0.71 2 326 227.76

Nachwei s

Feld 1

M_{pl}, y, d [KNm] χLT [m][kNm] 1: $L_{cr} = 4.60 \text{ m}$ (Abschnitt 84.09 102. 97 0.87 0.96

Nachweise (GZG) Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1993

Verformungsnachweis max. Verformungen

 W_z Wres W_{zul} Х Εk [m]mm] mm] [mm] Feld 1 9.35 <u>15. 33</u>

<u>Auflagerkräfte</u> Charakteristische und Bemessungsauflagerkräfte

Char.	Auflagerkr.	Aufl.	F _{z, k, mi n}	F _{z, k, max}
	· ·		[kN]	[KN]
Einw.	Gk	A	20. 41	20. 41
		В	20. 41	20. 41
Ei nw.	Qk. N	A		24.87
		В		24.87

Bem. -auflagerkräfte Aufl. ΕK Fz, d, max ΕK Fz, d, min [kN] [KN]Komb. 1..2 Ā 20. 41 64.87 В 20.41 2 64.87 1

Zusammenfassung Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit

Nachwei s	Feld	X	η
		[m]	[-]
Nachweis E-E	Feld 1	2. 30 OK	0.84
Stabilität	Feld 1	2.30 OK	0.90

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

> Nachwei s Fel d $\lceil m \rceil$ Verformung Feld 1

Teilproj.:

Datum

Teilprojekt1 **04.09.2015**

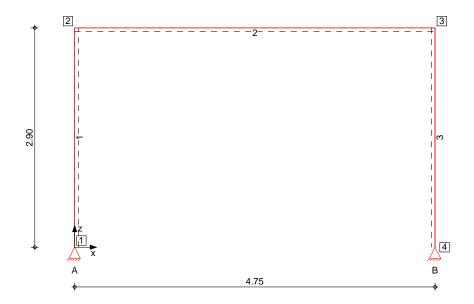
Proj.Bez Neubau einer Seebrücke mit Restaurant

mb BauStatik S601.de 2013.101

Seite Position Projekt

E7 Seebrücke

95


Pos. E7

Stahlrahmenkonstruktion

<u>System</u>

Stabwerk

M 1:50

Knotendefinition	Knoten		X	Z
			[m]	[m]
	1		0.00	0.00
	2		0.00	2. 90
	3		4.75	2. 90
	4		4. 75	0.00
Stabdefi ni ti on	Stab von bi Kn. Kn		Lage Achse Ma 「°l	terial Querschnitt
	1 1	2 2.90	0.0 fest S	235 HEB 220
	2 2	3 4.75	0.0 fest S	235 HEB 220
	3 3	4 2.90	0.0 fest S	235 HEB 220
Stabendgel enke	Alle Stäbe	sind drud	ck-, zug- und	bi egestei f

o tabonagor onko

Alle Stäbe sind druck-, zug- und biegesteif angeschlossen.

Auflagerdefinition global

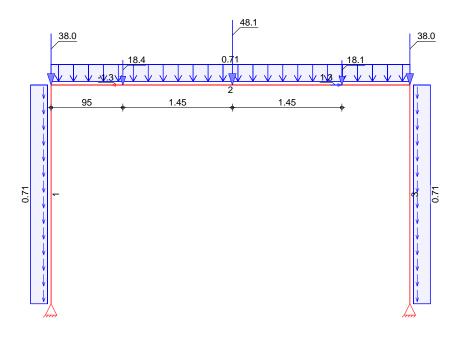
Lager	IXII.	Ν1, X	IX1, Z	IXR, Y
•		[kN/m]	[kN/m]	[kNm/rad]
A	1	fest	fest	frei
В	4	fest	fest	frei

<u>Einwirkungen</u> Einwirkungen nach DIN EN 1990: 2010-12

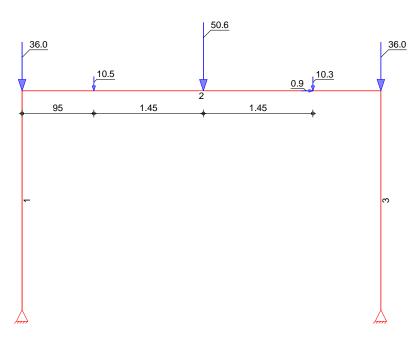
Gk	Ständige Einwirkungen		
Qk.N	Kategorie A - Wohn- und		fw
	Aufenthaltsräume		
Qk.W	Windlasten	LG 98	
	Qk.W (min/max Werte)		
Qk. S	Schnee- und Eislasten für Orte bis	LG 99	
	NN + 1000 m		
	Ok S (min/may Werte)		

ewer version zo 13 - Capyright zo 12 - mb AEC Sortware Gm

Bel astungen


Belastungen auf das System

<u>Grafik</u>


Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkung

Gk

Qk. N

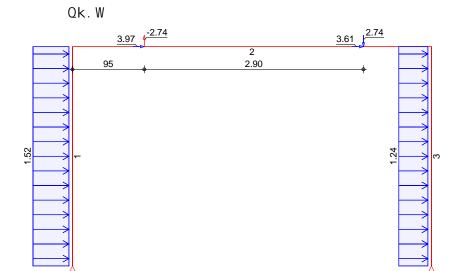
Neubau einer Seebrücke mit Restaurant Proj.Bez

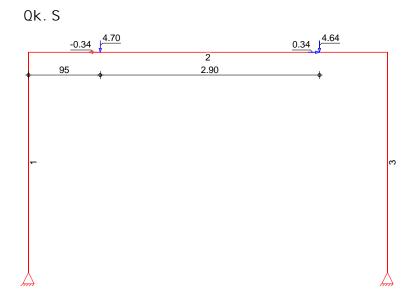
Seite

Position

E7

97


Teilproj.: Datum


Teilprojekt1 04.09.2015

mb BauStatik S601.de 2013.101

Projekt

Seebrücke

<u>Ei gengewi cht</u> in z-Ri chtung	Ei gen Stab	gewicht am	Stab Kommentar			Qz
Einw. Gk	1-3		Eigengew			[kN/m] 0.71
Streckenlasten in x-Richtung Einw. Qk.W		kenlasten Kommentar	am Stab a [m] 0.00 0.00	s [m] 2.90 2.90	qx,ii [kN/m]	q _{x, re} [kN/m] 1.52 1.24
<u>Punktlasten</u> in x-/z-Richtung Einw. Gk		llasten am Kommentar	Stab a [m] 2.90 0.00 2.40 0.95		F _x [kN] 1.30	F _z [kN] 37. 95 37. 95 48. 08 18. 36

Proj.Bez	Neubau einer Seebrücke mit Restaurant			Seite	98
Teilproj.:	Teilprojekt1			Position	E7
Datum	04.09.2015	mb BauStatik S601.de	2013.101	Projekt	Seebrücke

Einw. Qk.N	St (e, f) 2 (g) 1	ab Ko	mmen		a [m] 3.85 2.90		F _x [kN] . 30		F _z [kN] 18. 14 35. 97
LITIW. QK. N	(g) 3 (h) 2 (i) 2 (j,k) 2				0. 00 2. 40 0. 95 3. 85	ſ). 92		35. 97 50. 55 10. 48 10. 31
Einw. Qk.W	(I, m) 2 (n, o) 2				0. 95 3. 85	3	3. 97 3. 61		-2. 74 2. 74
Einw. Qk.S	(p, q) 2 (r, s) 2				0. 95 3. 85	- C). 34		4. 70 4. 64
(a)	au	s Pos	. E5	A-Vz-Gk	-max	*(2) 18.977*(2)	=	37. 95	kN
(b)	au	s Pos	. E4	A-Vz-Gk	-max	*(2) 24.039*(2)	=	48. 08	kN
(c)	au	s Pos	. R1	A-Hx-Gk	-max	-1. 301	=	-1. 30	kΝ
(d)	au	s Pos	. R1	A-Vz-Gk	-max	18. 360) =	18. 36	kΝ
(e)	au	s Pos	. R1	B-Hx-Gk	-max	1. 301	=	1. 30	kN
(f)	au	s Pos	. R1	B-Vz-Gk	-max	18. 140) =	18. 14	kN
(g)	au	s Pos	. E5	A-Vz-Qk	. N-ma	ax *(2) 17.986*(2)	=	35. 97	kN
(h)	au	s Pos	. E4	A-Vz-Qk	. N – ma	ax *(2) 25.276*(2)	=	50. 55	kN
(i)	au	s Pos	. R1	A-Vz-Qk	. N-ma	ax 10.479) =	10. 48	kN
(j)	au	s Pos	. R1	B-Hx-Qk	. N – ma	ax 0.916) =	0. 92	kN
(k)	au	s Pos	. R1	B-Vz-Qk	. N – ma	ax 10.311	=	10. 31	kN
(1)	au	s Pos	. R1	A-Hx-Qk	. W – ma	ax 3.968	3 =	3. 97	kN
(m)	au	s Pos	. R1	A-Vz-Qk	. W – ma	ax -2.741	=	-2.74	kN
(n)	au	s Pos	. R1	B-Hx-Qk	. W – ma	ax 3.608	3 =	3. 61	kN
(0)	au	s Pos	. R1	B-Vz-Qk	. W – ma	ax 2.741	=	2.74	kN
(p)	au	s Pos	. R1	A-Hx-Qk	. S-ma	ax -0.335		-0.34	kN
(q)	au	s Pos	. R1	A-Vz-Qk	. S-ma	ax 4.698	3 =	4. 70	kN
(r)	au	s Pos	. R1	B-Hx-Qk	. S-ma	ax 0.335	. =	0.34	kN
(s)	au	s Pos	. R1	B-Vz-Qk	. S-ma	ax 4.636) =	4.64	kN
<u>Kombi nati onen</u>	Kc	mbi na	tion	sbi I dung	nacl	n DIN EN 19	90		
ständi g/vorüberç			(γ * · . 35 * · . 35 * ·			50*Qk.N ,2,3)			

04.09.2015

Datum

Proj.BezNeubau einer Seebrücke mit RestaurantSeite99Teilproj.:Teilprojekt1PositionE7

Projekt

Seebrücke

mb BauStatik S601.de 2013.101

Ek	$\Sigma (\gamma * \psi * EW)$		
3	1. 35*Gk	+1.50*Qk.W	
4 5	1. 35*Gk 1. 35*Gk	+1.50*Qk.S +1.05*Qk.N (1,2,3)	+1.50*Qk.W
6	1. 35*Gk	+1.50*Qk.N (1,2,3)	+0.75*Qk.S
7	1. 35*Gk	+1.05*Qk.N	+1.50*Qk.S
8 9	1. 35*Gk 1. 35*Gk	(1,2,3) +1.50*Qk.W +1.05*Qk.N	+0.75*Qk.S +1.50*Qk.W
,	+0. 75*Qk. S	(1, 2, 3)	11. 50 QK. W
10 11	1. 00*Gk 1. 00*Gk	+1.50*Qk.N	
12	1. 00 GK 1. 00*Gk	(1, 2, 3) +1. 50*Qk. W	
13	1.00*Gk	+1.50*Qk.S	
14	1. 00*Gk	+1.05*Qk.N (1,2,3)	+1.50*Qk.W
15	1. 00*Gk	+1.50*Qk.N (1,2,3)	+0. 75*Qk. S
16	1. 00*Gk	+1. 05*Qk. N (1, 2, 3)	+1.50*Qk.S
17 18	1.00*Gk 1.00*Gk	+1.50*Qk.W +1.05*Qk.N	+0.75*Qk.S +1.50*Qk.W
10		(1, 2, 3)	+1.50 QR.W
19	+0. 75*Qk. S 1. 35*Gk	+1.50*Qk.N	
20	1. 35*Gk	(3) +1.50*Qk.N	+0.90*Qk.W
21 22	1. 35*Gk 1. 00*Gk	(3) +0.90*Qk.W +1.50*Qk.N	+1.50*Qk.S
23	1. 00*Gk	(3) +1.50*Qk.N	+0.90*Qk.W
24	1. 00*Gk	(3) +0.90*Qk.W	+1.50*Qk.S
25	1. 35*Gk	+1. 50*Qk. N (1)	11.30 QK.3
26	1. 35*Gk	+1.50*Qk.N (1)	+0.90*Qk.W
27	1. 00*Gk	+1.50*Qk.N	
28	1. 00*Gk	(1) +1.50*Qk.N (1)	+0.90*Qk.W
29	1. 35*Gk	+1.50*Qk.N (2,3)	
30	1. 35*Gk	+1.05*Qk.N (2,3)	+1.50*Qk.W
31	1. 35*Gk	+1.50*Qk.N (2,3)	+0. 75*Qk. S
32	1. 35*Gk	+1.05*Qk.N (2,3)	+1.50*Qk.S
33	1. 35*Gk	+1.05*Qk.N (2,3)	+1.50*Qk.W
34	+0. 75*Qk. S 1. 00*Gk	+1. 50*Qk. N	
35	1. 00*Gk	(2, 3) +1. 05*Qk. N	+1.50*Qk.W
		(2, 3)	

Proj.BezNeubau einer Seebrücke mit RestaurantSeite100Teilproj.:Teilprojekt1PositionE7Datum04.09.2015mb BauStatik S601.de2013.101ProjektSeebrücke

Ek	$\Sigma (\gamma^* \psi^* EW)$		
36	1. 00*Ġk	+1.50*Qk.N (2,3)	+0. 75*Qk. S
37	1.00*Gk	+1.05*Qk.N (2,3)	+1.50*Qk.S
38	1. 00*Gk	+1.05*Qk.N (2,3)	+1.50*Qk.W
39	+0. 75*Qk. S 1. 35*Gk	+1.05*Qk.N	+1.50*Qk.W
40	1. 35*Gk	(1) +1.05*Qk.N	+1.50*Qk.S
41	1.35*Gk	(1) +1.05*Qk.N (1)	+0.90*Qk.W
42	+1.50*Qk.S 1.00*Gk	+1. 05*Qk. N	+1.50*Qk.W
43	1.00*Gk	(1) +1.05*Qk.N	+1.50*Qk.S
44	1. 00*Gk	(1) +1.05*Qk.N (1)	+0.90*Qk.W
45	+1.50*Qk.S 1.35*Gk	+1. 50*Qk. N	
46	1. 35*Gk	(2) +1.05*Qk.N	+1.50*Qk.W
47	1.35*Gk	(2) +1.50*Qk.N	+0. 75*Qk. S
48	1. 35*Gk	(2) +1.05*Qk.N	+1.50*Qk.S
49	1. 35*Gk	(2) +1.05*Qk.N (2)	+1.50*Qk.W
50	+0. 75*Qk. S 1. 00*Gk	+1. 50*Qk. N	
51	1. 00*Gk	(2) +1.05*Qk.N	+1.50*Qk.W
52	1. 00*Gk	(2) +1.50*Qk.N	+0. 75*Qk. S
53	1. 00 °GK 1. 00*GK	(2) +1.05*Qk.N	+1. 50*Qk. S
		(2)	
54	1. 00*Gk	+1.05*Qk.N (2)	+1.50*Qk.W
55	+0. 75*Qk. S 1. 35*Gk	+1.50*Qk.N	+0.90*Qk.W
56	1.35*Gk	(2) +1.50*Qk.N (2)	+0.90*Qk.W
57	+0. 75*Qk. S 1. 35*Gk	+1.05*Qk.N (2)	+0.90*Qk.W
58	+1.50*Qk.S 1.00*Gk	+1.50*Qk.N	+0.90*Qk.W
59	1.00*Gk	(2) +1.50*Qk.N (2)	+0.90*Qk.W
60	+0.75*Qk.S 1.00*Gk	+1.05*Qk.N (2)	+0.90*Qk.W
61	+1.50*Qk.S 1.35*Gk	+1. 05*Qk. N	+1.50*Qk.W

Proj.BezNeubau einer Seebrücke mit RestaurantSeite101Teilproj.:Teilprojekt1PositionE7Datum04.09.2015mb BauStatik S601.de2013.101ProjektSeebrücke

Ek	Σ (γ*ψ*EW)		
62	1. 35*Gk	(3) +1.05*Qk.N	+1.50*Qk.S
63	1. 00*Gk	(3) +1.05*Qk.N	+1.50*Qk.W
64	1. 00*Gk	(3) +1.05*Qk.N	+1.50*Qk.S
65	1. 35*Gk	(3) +1.50*Qk.N	
66	1. 35*Gk	(1, 2) +1.50*Qk.N	+0.90*Qk.W
67	1. 35*Gk	(1, 2) +1. 05*Qk. N (1, 2)	+1.50*Qk.W
68	1. 35*Gk	+1.50*Qk.N (1,2)	+0. 75*Qk. S
69	1. 35*Gk	+1.05*Qk.N (1,2)	+1.50*Qk.S
70	1. 35*Gk	+1.50*Qk.N (1,2)	+0.90*Qk.W
71	+0.75*Qk.S 1.35*Gk	+1. 05*Qk. N (1, 2)	+1.50*Qk.W
72	+0.75*Qk.S 1.35*Gk	+1. 05*Qk. N (1, 2)	+0.90*Qk.W
73	+1.50*Qk.S 1.00*Gk	+1.50*Qk.N	
74	1. 00*Gk	(1, 2) +1. 50*Qk. N (1, 2)	+0.90*Qk.W
75	1. 00*Gk	+1.05*Qk.N	+1.50*Qk.W
76	1. 00*Gk	(1, 2) +1. 50*Qk. N (1, 2)	+0.75*Qk.S
77	1. 00*Gk	+1.05*Qk.N (1,2)	+1.50*Qk.S
78	1. 00*Gk	+1.50*Qk.N (1,2)	+0.90*Qk.W
79	+0.75*Qk.S 1.00*Gk	+1. 05*Qk. N (1, 2)	+1.50*Qk.W
80	+0.75*Qk.S 1.00*Gk	+1. 05*Qk. N (1, 2)	+0.90*Qk.W
81	+1.50*Qk.S 1.35*Gk	+1.50*Qk.N	+0. 75*Qk. S
82	1. 35*Gk	(1) +1.50*Qk.N	+0.90*Qk.W
83	+0.75*Qk.S 1.35*Gk	(1) +1.05*Qk.N (1)	+1.50*Qk.W
84	+0.75*Qk.S 1.00*Gk	+1. 50*Qk. N	+0. 75*Qk. S
85	1. 00*Gk	(1) +1.50*Qk.N	+0.90*Qk.W
86	+0.75*Qk.S 1.00*Gk	(1) +1.05*Qk.N (1)	+1.50*Qk.W

Proj.BezNeubau einer Seebrücke mit RestaurantSeite102Teilproj.:Teilprojekt1PositionE7Datum04.09.2015mb BauStatik S601.de2013.101ProjektSeebrücke

Ek	Σ (γ*ψ*EW)		
87	+0. 75*Qk. S 1. 35*Gk	+1. 50*Qk. N	+0. 75*Qk. S
88	1. 35*Gk	(3) +1.05*Qk.N	+1.50*Qk.W
89	+0. 75*Qk. S 1. 00*Gk	(3) +1.50*Qk.N	+0. 75*Qk. S
90	1. 00*Gk	(3) +1.05*Qk.N	+1.50*Qk.W
01	+0. 75*Qk. S	(3)	0.00±01.W
91	1. 35*Gk	+1.50*Qk.N (1,2,3)	+0. 90*Qk. W
92	1. 35*Gk	+1.50*Qk.N (1,2,3)	+0.90*Qk.W
93	+0. 75*Qk. S 1. 35*Gk	+1.05*Qk.N (1,2,3)	+0.90*Qk.W
94	+1.50*Qk.S 1.00*Gk	+1. 50*Qk. N	+0.90*Qk.W
95	1. 00*Gk	(1, 2, 3) +1.50*0k.N	+0.90*Qk.W
96	+0.75*Qk.S 1.00*Gk	(1, 2, 3) +1. 05*Qk. N	+0.90*Qk.W
, 0	+1.50*Qk.S	(1, 2, 3)	,
97	1. 35*Gk	+1.50*Qk.N (2,3)	+0.90*Qk.W
98	1. 35*Gk	+1.50*Qk.N (2,3)	+0.90*Qk.W
99	+0. 75*Qk. S 1. 35*Gk	+1.05*Qk.N	+0.90*Qk.W
100	+1.50*Qk.S 1.00*Gk	(2, 3) +1. 50*Qk. N	+0.90*Qk.W
101	1. 00 GK	(2, 3) +1. 50*Qk. N	+0. 90*Qk. W
101	+0. 75*Qk. S	(2, 3)	10. 70 QK. W
102	1. 00*Gk	+1.05*Qk.N (2,3)	+0.90*Qk.W
103	+1. 50*Qk. S 1. 00*Gk	(=, -,	
104	1. 00*Gk	+0.30*Qk.N (1,2,3)	
105	1. 00*Gk	+0. 30*Qk. N (1, 2)	
106	1. 00*Gk	+0.30*Qk.N	
107	1. 00*Gk	(3) +0.30*Qk.N (1)	
108	1.00*Gk	+0.30*Qk.N (2,3)	

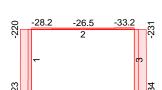
quasi -ständig

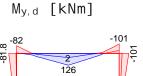
Proj. BezNeubau einer Seebrücke mit RestaurantSeite103Teilproj.:Teilprojekt1PositionE7

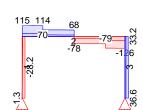
Datum 04.09.2015 mb BauStatik S601.de 2013.101

Position Projekt

 $V_{z,d}$ [kN]


Seebrücke


Bem. -schnittgrößen Bemessungsschnittgrößen Theorie I. Ordnung


Grafik Schnittgrößen (Umhüllende)

 $N_d[kN]$

Kombi nati onen

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

	Х	N _{d, mi n}	Ek	My, d, mi n	Ek	$V_{z,d,min}$	Ek
	[m]	N _{d, max} [kN]	Ek	My, d, max [kNm]	Ek	V _{z,d,max} [kN]	Ek
1	0.00	-222.52	6	0.00	_	-28. 20	6
		-70.53	12	0.00	_	1. 33	12
	0. 58	-221. 96	6	-16. 35	6	-28. 20	6
		-70.11	12	0. 39	12	0. 01	12
	2. 90	-219. 72	6	-81. 77	6	-28. 20	6
		-68.46	12	-5. 73	42	-5. 28	12
2	0.00	-28. 20	6	-81. 77	6	30. 50	12
		-5. 28	12	-5. 73	12	114. 53	6
	2.40	-26.54	56	44. 75	12	14. 49	17
		-9. 35	10	126. 48	6	68. 24	_2
	3.85	-26.54	56	-4.63	42	-79.34	56
		-9.35	10	20. 28	31	-25.58	10
	3.85	-33. 17	56	-4.63	42	-125. 24	56
		-10.65	10	20. 28	31	-43.72	10
	4. 75	-33.17	56	-100.86	56	-126. 11	56
		-10.65	10	-30.88	22	-44.36	10
3	0.00	-231.30	92	-100.86	56	10.65	22
		-82. 32	10	-30.88	22	33. 17	56
	2. 90	-234. 10	92	0.00	-	10.65	10
		-84. 39	10	0.00	-	36. 57	9

Bem. -verformungen

Bemessungsverformungen Theorie I. Ordnung

<u>Tabel I e</u>

Verformungen (Umhüllende)

	X	Wz, d, mi n	Ek	Wz, d, max	Ek	W_{X} , d, mi n	Ek	Wx, d, max	Ek
	[m]	[mm]		[mm]		[mm]		[mm]	
1	0.00	0.00	-	0. 00	-	0.00	-	0.00	-
	1. 64	-1.17	105	-0. 98	106	-0.09	104	-0.07	103
	2. 90	-0.03	107	0. 11	108	-0. 16	104	-0. 13	103
2	0.00	0. 13	103	0. 16	104	-0.03	107	0. 11	108
	2. 38	4. 26	103	5. 40	104	-0.04	107	0.09	108
	4. 75	0. 13	103	0. 16	104	-0.05	107	0. 07	108
3	0.00	-0.07	108	0. 05	107	0. 13	103	0. 16	104
	1. 24	-1.29	108	-0. 95	107	0.07	103	0.09	104
	2. 90	0.00	-	0.00	-	0.00	-	0.00	-

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite

104 **E7**

η

 τ_{d}

Datum

Teilproj.: Teilprojekt1 04.09.2015

mb BauStatik S601.de 2013.101

Position Projekt

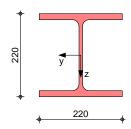
Seebrücke

Mat. /Querschni tt

Material - und Querschnittswerte nach DIN EN 1993

Material

Material $[N/mm^2]$ S 235 <u>210000</u>


Querschni tt

Nr	Profil	Α	W_{y}	$S_y S_z$	l y I z	Ιt
		$[cm^2]$	[cm³]	[cm³]	[cm ⁴]	$[cm^4]$
1	HEB 220	91. 0	736.0	414. Ō	8090	76.8
			258.0	195.7	2840	

Grafi k

Querschnittsgrafik [mm]

M 1: 10

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

Nachweis E-E Abs. 6.2

Nachweis der Biege- und Querkrafttragfähigkeit $M_{y,d}$ $V_{z, d}$ $N_{x,d}$ σ_{d}

Stab 1

					Ο v, u	
[m]		[kN]	[kNm]	[kN]	$[N/mm^2]$	[-]
2. 90	6	-219. 72	-81. 77	-28. 20	135. 25	0. 58
					3. 91	
					135. 42	
2 10	- 6	26 10	126 /0	72 55	17/ 72	O 75*

Stab 2

Stab 3

174. 73 - /2.55 0. /5 10.06 175.60 0.00 92 -231. 30 -100, 86 33. 17 162.46 0.69

4.60 162.65

Nachweise (GZG)

Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1993

<u>Verformungsnachweis</u>

max. Verformungen

	X EK	W_Z	W _{zul} 1
	[m]	[mm]	[mm] [-]
Stab 1 Stab 2 Stab 3	1.64 105	1. 18	9. 67 0. 12
Stab 2	2.38 104	5. 40	15. 83 0. 34
Stab 3	1. 24 108	1. 29	9. 67 0. 13

<u>Auflagerkräfte</u>

Charakteristische Auflagerkräfte (global)

Char.	Auflagerkr.	Aufl.	$F_{x, k, min}$	$F_{x, k, max}$	F _{z, k, mi n}	$F_{z, k, max}$
	•		[kN]	[kN]	[kN]	[kN]
Ei nw.	Gk	A	-10.65	-10.65	83.63	83.63
		В	10. 65	10. 65	84.39	84. 39

Proj.Bez N	Neubau einer Seebi	rücke mit Restaurant		Seite	105
Teilproj.:	Teilprojekt1			Position	E7
Datum	04.09.2015 m	b BauStatik S601.de	2013.101	Projekt	Seebrücke
Einw. Qk. N Einw. Qk. W Einw. Qk. S	Aufl. A B A B A B A B	F _{x, k, min} [kN] 0.00 9.70 7.98 7.58 -0.85 0.85	F _{x, k, max} [kN] -8.79 0.00 7.98 7.58 -0.85 0.85	F _{z, k, min} [kN] 0.00 0.00 -8.74 8.74 4.64 4.70	F _{z, k, max} [kN] 70.76 72.53 -8.74 8.74 4.64 4.70
Zusammenfassung	Zusamm	enfassung der	Nachwei se		
Nachweise (GZT)	Nachwe	ise im Grenzz	ustand der	Tragfähi gke	i t
	Nachwe	ei s			η Γ_1
	Nachwe	is E-E			OK 0.75
Nachweise (GZG)	Nachwe	ise im Grenzz	ust. der Ge	ebrauchstaug	lichkeit

Nachwei s

Verformung

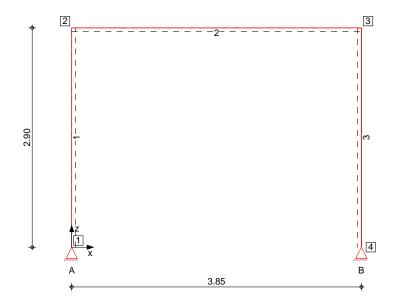
Datum

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite Teilproj.: Teilprojekt1

04.09.2015 mb BauStatik S601.de 2013.101 Position Projekt

E7.1 Seebrücke

106


Pos. E7.1

Stahlrahmenkonstruktion

<u>System</u>

Stabwerk

M 1:50

Knotendefinition	Knoten			X			Z		
						[m]		[m]	
	1					0.00	C	0.00	
	2					0.00)	2. 90	
	3					3. 8!	5	2. 90	
	4					3. 8!	5	0.00	
Stabdefi ni ti on	Stab			Į		Achse	Materi al	Querschnitt	
		Kn.	Kn.	[m J	[°]				
	1	1	2	2. 90	0.0	fest	S 235	HEB 220	
	2	2	3	3.85	0.0	fest	S 235	HEB 220	
	3	3	4	2. 90	0.0	fest	S 235	HEB 220	

Stabendgel enke Alle Stäbe sind druck-, zug- und biegesteif angeschl ossen.

Auflagerdefinition gl obal

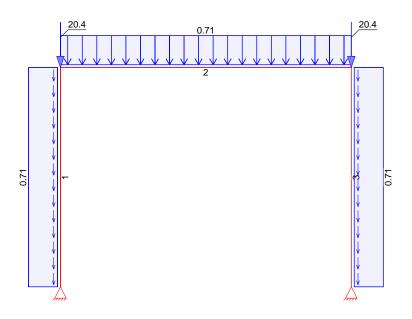
Lager	Kn.	K _{T, x}	K _{T, z}	K _{R, y}
•		[kN/m]	[kN/m]	[kNm/rad]
A	1	fest	fest	frei
В	4	fest	fest	frei

<u>Ei nwi rkungen</u> Einwirkungen nach DIN EN 1990: 2010-12

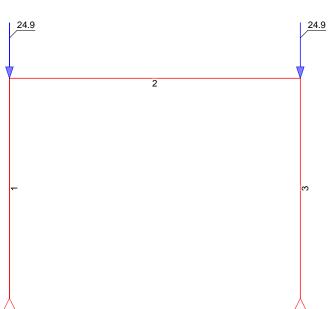
Gk	Ständige Einwirkungen		
Qk.N	Kategorie A - Wohn- und		fw
	Aufenthaltsräume		
Qk.W	Windlasten	LG 98	
	Ok W (min/max Werte)		

Bel astungen

Belastungen auf das System

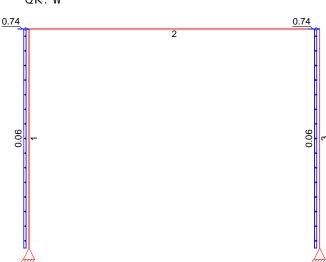

<u>Grafik</u>

Belastungsgrafiken (Einwirkungsbezogen)


107

Ei nwi rkung

Gk


Qk. N

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 108 E7.1 Teilproj.: Teilprojekt1 Position 04.09.2015 mb BauStatik S601.de 2013.101 Projekt Seebrücke Datum

Qk. W

Ei gengewi cht in z-Richtung

Einw. Gk

Streckenl asten in x-Richtung

Einw. Qk. W

Eigengewicht am Stab Kommentar Stab

1-3 Ei gengew

Streckenlasten am Stab Stab Kommentar

[m]0.00 3 0.00

 $\lceil m \rceil$ 2. 90 2.90

 q_x , Li q_x, re [kN/m] [KN/m] 0.06 0.06

<u>Punktlasten</u> in x-/z-Richtung

Einw. Gk

Einw. Qk. N

Einw. Qk. W

Einzellasten am Stab Stab Kommentar

	[m]	[kN]
1	2. 90	
3	0.00	
1	2. 90	
3	0.00	
1	2 00	0.74

0.00

(a)

aus Pos. E6 A-Vz-Gk-max

0.74 20.414 =

S

20.41 kΝ

(b)

aus Pos. E6 A-Vz-Qk. N-max

24.875 =

 F_x

24.88 kΝ

[kN] 20. 41 20. 41

24.87

24.87

kΝ

(c)

aus Wind

(a) (a)

(b)

(b)

(c)

(c) 3

0.64*0.5*4.6/2 =

0.74

+1.50*Qk.W

Kombi nati onen

Kombinationsbildung nach DIN EN 1990

ständi g/vorüberg.

Ek	$\Sigma (\gamma * \psi * EW)$	
1	1. 35 * Gk	
2	1.35*Gk	+1.50*Qk.N
		(1)
3	1. 35*Gk	+1.50*Qk.W
4	1.35*Gk	+1.05*Qk.N
		(1)
5	1. 00*Gk	
6	1.00*Gk	+1.50*Qk.N
		(1)
7	1.00*Gk	+1.50*Qk.W

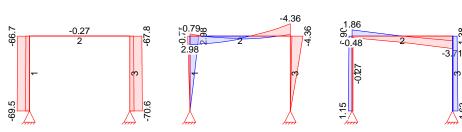
Proj.BezNeubau einer Seebrücke mit RestaurantSeite109Teilproj.:Teilprojekt1PositionE7.1Datum04.09.2015mb BauStatik S601.de2013.101ProjektSeebrücke

	<u>Ek</u> 8	Σ (γ *ψ*EW) 1.00*Gk	+1. 05*Qk. N	+1.50*Qk.W
	9	1. 35*Gk	(1) +1.50*Qk.N	
	10	1. 35*Gk	(3) +1.50*Qk.N (3)	+0.90*Qk.W
	11	1. 35*Gk	+1.05*Qk.N (3)	+1.50*Qk.W
	12	1.00*Gk	+1.50*Qk.N (3)	
	13	1.00*Gk	+1.50*Qk.N (3)	+0.90*Qk.W
	14	1. 00*Gk	+1.05*Qk.N (3)	+1.50*Qk.W
quasi -ständig	15 16	1. 00*Gk 1. 00*Gk	+0. 30*Qk. N (1)	
	17	1. 00*Gk	+0.30*Qk.N (3)	
	18	1. 00*Gk	+0.30*Qk. N (1,3)	

Bem. -schni ttgrößen

Bemessungsschnittgrößen Theorie I. Ordnung

<u>Grafik</u>


Schnittgrößen (Umhüllende)

Kombi nati onen

 $N_d[kN]$

 $M_{y,d}$ [kNm]

 $V_{z,d}$ [kN]

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

	X	N _{d, mi n}	Ek	My, d, mi n	Ek	$V_{z,d,min}$	Ek
		N_d,max	Ek	My, d, max	Ek	$V_{z,d,max}$	Ek
	[m]	[kN]		[kNm]		[kN]	
1	0.00	-69. 52	2	0.00	-	-0. 27	2
		-22.01	7	0.00	_	1. 15	14
	2. 90	-66. 73	2	-0. 79	2	-0. 27	2
		-19.94	7	2. 98	14	0. 90	14
2	0.00	-0. 27	1	-0. 79	2	-0.48	14
		-0. 20	5	2. 98	14	1.86	2
	3.85	-0. 27	1	-4.36	11	-3.71	11
		-0. 20	5	-0. 59	6	-1.38	6
3	0.00	-67.84	10	-4.36	11	0. 20	6
		-21. 79	5	-0. 59	6	1. 38	11
	2. 90	-70.63	10	0.00	_	0. 20	6
		-23.86	5	0.00	-	1.63	11

Neubau einer Seebrücke mit Restaurant Proj.Bez

Position

Teilproj.: Teilprojekt1 04.09.2015 Datum

mb BauStatik S601.de 2013.101

Projekt

Seite

Seebrücke

110 E7.1

Bem. -verformungen

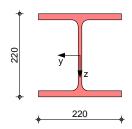
Bemessungsverformungen Theorie I. Ordnung

<u>Tabel I e</u>

Verformungen (Umhüllende)

	X	W_{Z} , d, min	ŁΚ	Wz, d, max	ŁΚ	W_{X} , d, min	ŁΚ	W_{x} , d , max	ŁΚ
	[m]	[mm]		[mm]		[mm]		[mm]	
1	0.00	0.00	-	0.00	-	0.00	-	0.00	_
	1. 84	-0.02	16	-0.01	17	-0.03	16	-0.02	15
	2. 90	-0.01	16	0. 01	17	-0.05	16	-0.03	15
2	0.00	0.03	15	0. 05	18	-0.01	16	0. 01	17
	1. 93	0.09	15	0. 10	18	-0.01	16	0. 01	17
	3.85	0.03	15	0. 05	18	-0.01	16	0.01	17
3	0.00	-0.01	17	0. 01	16	0.03	15	0.05	17
	1. 06	-0.02	17	-0. 01	16	0.02	15	0.03	17
	2. 90	0.00	-	0.00	_	0.00	_	0.00	_

Mat. /Querschni tt


Material - und Querschnittswerte nach DIN EN 1993

Material Material $\lceil N/mm^2 \rceil$ S 235 210000 Profil Querschni tt Nr Α Ιt $\lceil \mathsf{cm}^2 \rceil$ [cm4] HEB 220 8090 76.8 736. 0 258.0 195.7 2840

Grafik

Querschnittsgrafik [mm]

M 1: 10

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach **DIN EN 1993**

Nachweis E-E Abs. 6.2

Nachweis der Biege- und Querkrafttragfähigkeit x Ek $N_{x,d}$ $M_{V,d}$ $V_{z,d}$ σ_{d}

Stab 1 Stab 2 Stab 3

[m]		[kN]	[kNm]	[kN]	$[N/mm^2]$	[-]
2. 90	4	-53.68	2. 78	0.83	9.67	0.04
					0. 12	
					9. 67	
3.85	3	-0. 27	-4.36	-3.71	5. 95	0. 03
					0. 51	
					6. 02	
0.00	11	-57. 39	-4.36	1.38	12. 23	0.05*
					0. 19	

12.23

 τ_{d}

η

Proj.Bez Neubau einer Seebrücke mit Restaurant Seite

Teilproj.: Teilprojekt1

Datum 04.09.2015 mb BauStatik S601.de 2013.101

Position Projekt

Seebrücke

111 E7.1

Nachweise (GZG)
Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1993

<u>Verformungsnachweis</u>	max.	Verformungen

	X EK	W_Z	W_{Zul} η
	[m]	[mm]	[mm] [-]
Stab 1 Stab 2 Stab 3	2. 90 16	0. 05	9. 67 0. 00
Stab 2	1. 93 18	0. 10	12.83 0.01
Stab 3	0.00 17	0. 05	9. 67 0. 00

<u>Auflagerkräfte</u> Charakteristische Auflagerkräfte (global)

Char.	Auflagerkr.	Aufl.	$F_{x, k, min}$	$F_{x, k, max}$	$F_{z, k, min}$	$F_{z, k, max}$
			[kN]	[kN]	[kN]	[kN]
Ei nw.	Gk	Α	-0. 20	-0. 20	23. 86	23. 86
		В	0. 20	0. 20	23. 86	23. 86
Ei nw.	Qk.N	A	0. 00	0.00	0.00	24.87
		В	0.00	0.00	0.00	24.87
Ei nw.	Qk.W	A	0. 90	0. 90	-1.24	-1. 24
		В	0. 90	0. 90	1. 24	1. 24

<u>Zusammenfassung</u> Zusammenfassung der Nachweise

<u>Nachweise (GZT)</u> Nachweise im Grenzzustand der Tragfähigkeit

Nachweis $$\eta$$ [-] Nachweis E-E $$0 \mbox{K}$ 0.05$

<u>Nachweise (GZG)</u> Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis r
Verformung OK 0.01

Proj.Bez Neubau einer Seebrücke mit Restaurant Seite 112 **E8** Teilproj.: Teilprojekt1 Position

04.09.2015 mb BauStatik S754.de 2013.101 Datum

Projekt Seebrücke

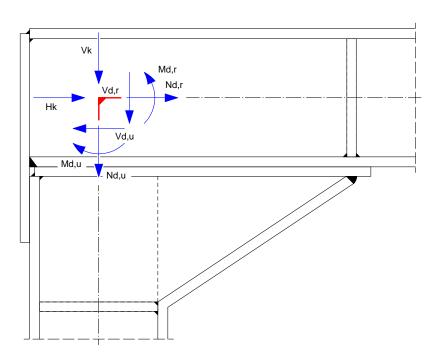
Stahl-Rahmenknoten, geschraubt Pos. E8

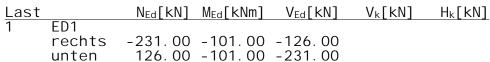
Biegesteife Riegel-Stiel-Verbindung System

Knotentyp: Eck-Rahmenknoten Der Riegel wird auf dem Stiel aufgelegt. Ausführungsform: Anschluss mit Zuglasche Die Verbindung wird geschraubt ausgeführt.

 $t_w[mm]$ Riegel, Stiel h [mm] b [mm] t_f[mm] r [mm] 9.5 HEB 220 220 220 16.0 18.0

I [mm] 200 Voute h [mm] tw[mm] t_f[mm] 300 einsei tig 16. 0

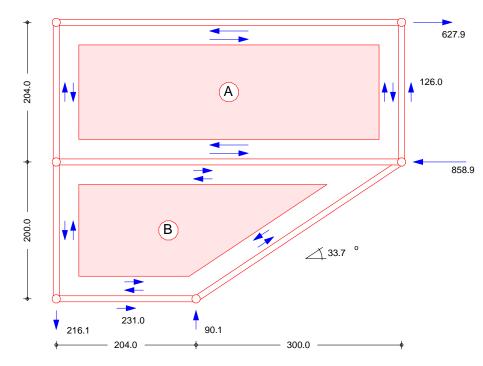

Einwirkungen nach DIN EN 1990: 2010-12 Ei nwi rkungen


Kombi nati onen

ED1 Bemessungslast

Lasten aus Grundkomb.

Schnittgrößen gelten für den ideellen Knotenpunkt. Bel astungen



Bemessung (GZT) gemäß DIN EN 1993-1-1 und DIN EN 1993-1-8

Art der Schraubenverbindung Kategorie E Schraubenart hochfeste Schrauben Festi gkei tsklasse 8.8 Schraubengröße M 16 Lochdurchmesser dο mm Schei bendurchmesser D 30 mm Grenzabscherkraft $F_{v,\,Rd}$ 77.2 kΝ 90.3 Grenzzugkraft $F_{t,Rd}$ kΝ

Eckfeld Nachweis wird gemäß Fachwerkanalogie durchgeführt.

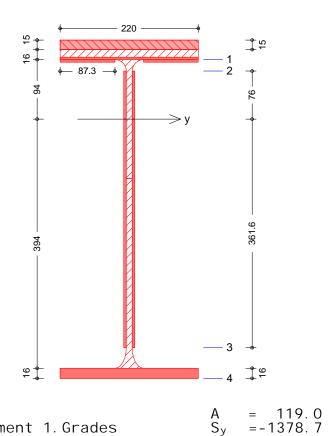
Berechnungsmodell: Last 1

Anschni ttmomente

im Riegel - 101.0 - 126.0 * 0.402 = -151.7 kNm im Stiel - 101.0 + 231.0 * 0.302 = -31.2 kNm

maßa. Schubkräfte

Bemessungslast 1


maby. Schabki ar te	D	cilic 3 drig 31 d.			
	BI ech	T _o [kN]	T _u [kN]	T ₁ [kN]	T _r [kN]
	A B	627. 9 38. 8	627. 9 95. 8	254. 1 38. 0	254. 1 68. 5
Schubfl uß	BI ech	το [N/mm]	τ _u [N/mm]	τι [N/mm]	τr [N/mm]
	Α	1245.8	1245.8	1245.8	1245.8
	В	76. 9	469.7	190. 1	190. 1

Proj.BezNeubau einer Seebrücke mit RestaurantSeite114Teilproj.:Teilprojekt1PositionE8Datum04.09.2015mb BauStatik S754.de2013.101ProjektSeebrücke

Schubspannungen	im Riegelsteg A im Stielsteg B	131.1 / 135 49.4 / 135		0. 97 <= 1 0. 36 <= 1
maßg. Rippenkräfte	Stab Fo [kN] gel -0.0		F ₁ [kN] 1	Fr BL [kN] 0 -135.2
Rippen des Riegels	Rippe t b [mm] [mm] 1,2 15 105	h c [mm] [mm 188 20		a _{fu} a _{w, w} [mm] [mm] 4 4
Kräfte je Rippe	Ri ppe F ₁ [kN] 1, 2 49. 6	F ₂ [kN] 23.5	e ₁ [mm] 62.5	e ₂ [mm] 132.0
Spannungen	Rippe $\sigma_{Vd,1}$ [N/mm ²] 1,2 50.3	[N/mm ²] 38.9	σ vwd, 1 [N/mm²] 80.7	σ vwd, 2 [N/mm²] 50.9
Spannungsnachwei s	Rippen 1,2 Flanschnähte unten Stegnähte	50.3 / 235 80.7 / 207 50.9 / 207	. 8 =	0. 21 <= 1 0. 39 <= 1 0. 24 <= 1
Rippen des Stiels	Rippe t b [mm] [mm] 1,2 15 105	h c [mm] [mm 188 20		a _{fr} a _{w,w} [mm] [mm] 4 4
Kräfte je Rippe	Ri ppe F ₁ [kN] 1, 2 52. 4	F ₂ [kN] 24.8	e ₁ [mm] 62.5	e ₂ [mm] 132.0
Spannungen	Rippe $\sigma_{Vd, 1}$ [N/mm ²] 1, 2 53.1	σνd, 2 [N/mm²] 41. Ο	σ vwd, 1 [N/mm²] 85.2	σ _{vwd, 2} [N/mm ²] 53.6
Spannungsnachwei s	Rippen 1,2 Flanschnähte rechts Stegnähte	53. 1 / 235 85. 2 / 207 53. 6 / 207	. 8 =	0. 23 <= 1 0. 41 <= 1 0. 26 <= 1
Zugl asche	t [mm] b [mr 15 220	n] <u>I</u> O	[mm] 332	l _a [mm] 120
	Anzahl der Schrauber Anzahl der Schrauber		m = n =	2 2
Schraubenabstände	Nr. Randabsta 1 2	and [mm] Sc 25 65	<u>hraubenak</u>	ostand [mm] 40
	Randabstand seitlich	า	e ₂ =	30 mm
Nachwei s	zu übertragende Krat Netto-Querschnittsfl N _{x, Ed} / N _{u, Rd}	ft äche 250.5 / 723	$A_{net} =$	250. 5 KN 27. 9 cm ² 0. 35 <= 1
Stegnähte	Nahtart Doppel kehl naht	a [mm] 4	I [mm] 152	A [cm ²] 12.2
Spannungsnachwei s	Stegnähte	206.0 / 207	. 8 =	0.99 <= 1

Proj.Bez	Neubau einer	Seebrücke mit Restaurant		Seite	115
Teilproj.:	Teilprojekt1			Position	E8
Datum	04.09.2015	mb BauStatik S754.de	2013.101	Projekt	Seebrücke

Nachweis Schrauben	auf Abscheren	62.6 / 77.2	= 0.81 <= 1
Lochl ei bungsdruck	Randabstände Lochabstände	$\begin{array}{ccccc} e_1 & = & 25 & mm \\ p_1 & = & 40 & mm \end{array}$	$e_2 > 1.5 * dL$ $p_2 > 3.0 * dL$
Nachweis	Faktor Lochl ei bungskraft	62.6 / 84.7	= 1. 23 - = 0. 74 <= 1
Anschluss des Stiels Schweißnahtbild	sStelle Flansch links Steg Voutenflansch	Nahtart Kehl nähte Doppel kehl naht HV-Naht	a [mm] 4 4 16

Flächenwerte	Fläche Flächenmoment 1. Grades Flächenmoment 2. Grades Fläche der Stegnähte	A Sy Iy Aw, w	= - 13 = 755	19. 0 78. 7 55. 1 35. 0	Cm^2 Cm^3 Cm^4 Cm^2
		führungs der erücksi c	Berec		
Schni ttgrößen	Abstand des Schnittes Normalkraft Biegemoment Schubkraft (Blech B oben)	a N _{Ed} M _{Ed} T _o	= 1 = -	25 26. 0 72. 1 38. 8	mm KN KNm KN
	Normal spannungen Schubspannungen	σ wd, 1 σ wd, 2 σ wd, 3 σ wd, 4 τ wd, 2, 3	= = - = -	25. 2 32. 2 11. 1	N/mm ² N/mm ² N/mm ² N/mm ²
		τ wd, 4	=	48. 3	N/mm ²

Proj.BezNeubau einer Seebrücke mit RestaurantSeite116Teilproj.:Teilprojekt1PositionE8Datum04.09.2015mb BauStatik S754.de2013.101ProjektSeebrücke

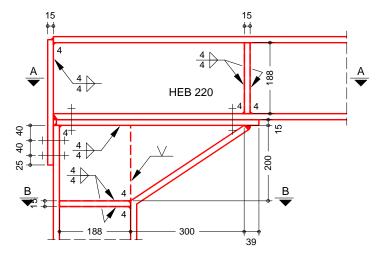
	Vergl ei chswerte	σ σ	vwd, 1 vwd, 2 vwd, 3 vwd, 4	= = =	40. 1 27. 5	N/mm ² N/mm ² N/mm ² N/mm ²
Spannungsnachwei s	HV-Naht Stegnähte	58.1 / 20 40.1 / 20		=		<= 1 <= 1
Stirnplatte des Stiels	$\begin{array}{cc} \text{Art} & \text{t} \\ & \text{[mm]} \\ \text{bündig} & 15 \end{array}$		h [mm 535		ü _l [mm] -8	ür [mm] 39
	Anzahl der Schraube Anzahl der Schraube		m n	=	4 2	
Schraubenabstände	Nr. Randabst	and [mm] S 40 465	<u>chrau</u>	ben	<u>abstand</u>	[mm] 425
	Randabstand seitlic Schraubenabstand	h	e ₂ a3	=	25 45	mm mm
Schni ttgrößen	Abstand des Schnitt Normalkraft Biegemoment Querkraft	es	a N _{Ed} M _{Ed} V _{Ed}	= = =	110 126. 0 -75. 6 -231. 0	mm KN KNm KN
Nachweis Plastisch	Abstände Abminderungsfaktor Plast. Moment des F Plast. Momente der Plastische Querkraf	lansches Stirnplatte t	M3 _{pl} V _{pl}	=	40 17 30 0.87 3.2 2.2 3.2 447.7	KNm KNm KNm KN
	Abgemind. Moment M ₂ Abstützkraft K Grenzkraft Z _{Rd} Flansch-Zugkraft Z		2. 2 7. 7 7. 7	= = = =	0. 86 0. 14 0. 67 0. 84	<= 1 <= 1 <= 1
Nachweis Schrauben	auf Zug auf Abscheren	62.6 / 9 57.8 / 7	0.3 7.2	=		<= 1 <= 1
Lochl ei bungsdruck	Randabstände Lochabstände	$e_1 > 3.0 * p_1 > 3.5 *$	dL dL	e p	2 = 2 2 = 4	
Nachwei s	Faktor Lochl ei bungskraft	57.8 / 13	8. 6	=	2. 01 0. 42	<= 1

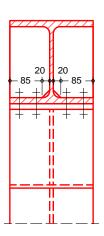
Proj.Bez Neubau einer Seebrücke mit Restaurant

Teilprojekt1

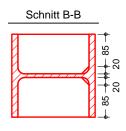
Teilproj.:

Datum


04.09.2015 mb BauStatik S754.de 2013.101


Seite Position 117 E8

Projekt


Seebrücke

M 1: 10

Stückliste

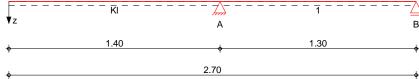
Riegel HEB 220 bxh = 220 x 220 mm Stiel HEB 220 bxh = 220 x 220 mm Voute hxlxs = 300 x 200 x 9.5 mm Rippe Riegel 2xbxhxt = 105 x 188 x 15 mm, c=20 mm Rippe Stiel 2xbxhxt = 105 x 188 x 15 mm, c=20 mm Zuglasche bxlxt = 220 x 332 x 15 mm Stirnplatte Stiel bxlxt = 220 x 535 x 15 mm Schrauben 12xSLV, FK8. 8, M16

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 118 Teilproj.: Teilprojekt1

04.09.2015 mb BauStatik S312.de 2013.101 Datum

Position Projekt

E9 Seebrücke


fw

Pos. E9 Unterzug - Stahträger

System Durchl aufträger

System z-Richtung

M 1:25

Abmessungen Mat./Querschnitt

Feld	1	Lage	Achsen	Materi al	Profil
	[m]	[°]			
KI	1. 40	0.0	fest	S 235	HEB 180
1	1. 30	0.0	fest		

Aufl ager

Lager	X	b	Art K _{T,z}	K _{R, y}
J	[m]	[cm]	[kN/m]	[kNm/rad]
A	1.40	20. 0	fest	frei
В	2.70	20. 0	fest	frei

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk Ok. N Ständige Einwirkungen Kategorie A - Wohn- und

Aufenthal tsräume

Erläuterungen

feldweise (fw)

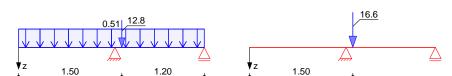
Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.

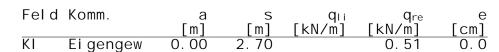
Bel astungen

Belastungen auf das System

Ei gengewi cht



Qk. N


Grafi k

Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen Gk

Streckenlasten in z-Richtung Einw. Gk

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite Teilproj.: Teilprojekt1

04.09.2015 mb BauStatik S312.de 2013.101 Datum

Position Projekt

119 **E9**

η

Seebrücke

Punktl asten in z-Richtung

Einw. Gk Einw. Qk. N

	Einzellasten			
	Feld Komm.	а	F_z	е
		[m]	[kN]	[cm]
(a)	1	0. 10	12. 82	0.0
(a)	1	0. 10	16. 58	0.0

(a)

aus Pos. 'E1', Lager 'A' (Seite 73)

Kombi nati onen Grundkombination Ed Schnittgrößen gemäß DIN EN 1990

Ek	Σ ($\gamma * \psi * EW$	(Fel der: 1,, n))
1	1. 35*Ğk	
2	1. 00*Gk	
3	1. 00*Gk	+1.50*Qk.N
		(2)
4	1. 35*Gk	+1.50*Qk.N
		(2)

q-st. Komb. Ed, perm

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

Tabel I e

Schnittgrößen (Umhüllende)

	Х	My, d, min	ΕK	My, d, max	Ek	$V_{z,d,min}$	EK	$V_{z, d, max}$	ΕK
	[m]	[KNm]		[KNm]		[kN]		[kN]	
Kragarm links	0.00	0.00	-	0.00	-	0.00	-	0.00	_
-	1. 40	-0.68	1	-0.50	2	-0.97	1	-0.72	2
Feld 1	0.00	-0.68	1	-0.50	3	12.56	2	39. 91	4
	0. 10	0. 75	2	3. 31	4	12.51	2	39.84	4
	0. 10	0. 75	2	3. 31	4	-2.34	4	-0.32	2
	1. 30	0.00	-	0.00	-	-3.17	4	-0.93	2

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

Nachweis E-E Abs. 6.2

Nachweis der Biege- und Querkrafttragfähigkeit x Ek QS/ $M_{y,d}$ $V_{z,d}$ σ_{d}

	1 100			vu	
	[m]	[kNm]	[kN]	$\sigma_{V,d}$ [N/mm 2]	[-]
Kragarm links	(L = 1.40 m) 1.40 1 1/2	-0.68	-0. 97	1. 59 0. 19 1. 63	0. 01*
Feld 1	(1 = 1.30 m)				

(L = 1.3 0.00	30 4	m) 1/1	-0. 68	39. 91	0. 00 29. 55 51. 18	0. 22*
0. 10	4	1/1	3. 31	39. 84	0. 00 29. 50 51. 09	0. 22
0. 57	4	1/2	2. 15	-2.66	5. 04 0. 52 5. 12	0. 02

Proj.Bez Neubau	einer Seebrücke mit Restaurant	Seite 120
Teilproj.: Teilproje		Position E9
Datum 04.09.20	015 mb BauStatik S312.de 2013.101	Projekt Seebrücke
	$\begin{array}{ccc} x & Ek & QS/ & & M_{y,d} \\ & Pkt & & \end{array}$	$V_{z,d}$ σ_d η $ au_d$
	[m] [kNm] 1.30 4 1/1 0.00	$\sigma_{ m V,d}$ [KN] [N/mm 2] [-]
	1.30 4 1/1 0.00	-3. 17
<u>Stabilität</u>	Nachweis der Stabilität	
Festhaltungen Kragarm links Feld 1	x-Koordinaten [m] bzgl. Fe 1.40 GL 0.00 GL	l danfang
	GL : Gabellager	
Globale Beiwerte	Bezugsschl ankhei tsgrad: Träghei tsrad. des Gurtes:	$\lambda_1 = 93.91$ $i_{f,z} = 4.87$ Cm
Verei nfachter Nachwei s	Ek Abs. L_c k_c vorh λ	zuιλ χ maxM η [KNm]
Kragarm links		5. 920. 68 0. 00*
Feld 1	4 1 1.30 0.78 0.22 1	5. 56 - 3. 31 0. 01*
Nachweise (GZG)	Nachweise im Grenzzustand Gebrauchstauglichkeit nach	
<u>Verformungsnachweis</u>	max. Verformungen x Ek Wz	W _{res} W _{zul} η
Kragarm links Feld 1	[m] [mm] 0.00 6 0.06 0.57 6 0.02	[mm] [mm] [-] 0.06 9.33 0.01 0.02 4.33 0.00
<u>Aufl agerkräfte</u>	Charakteristische und Beme	ssungsaufl agerkräfte
Char. Auflagerkr.	Aufl. F _{z, k, m}	
Einw. Gk	[kN A 13. 2 B 0. 9	7 13. 27
Einw. Qk.N	A B	15. 31 1. 28
Bemauflagerkräfte	$\begin{array}{ccccc} \text{Aufl.} & & & \text{F}_{z,d,\text{min}} & \text{E} \\ & & & & \text{[kN]} \end{array}$	$F_{z, d, max}$ EK $\lceil kN \rceil$
Komb. 24	A 13.27 B 0.93	2 40.88 4 2 3.17 4
Zusammenfassung	Zusammenfassung der Nachwe	i se
Nachweise (GZT)	Nachweise im Grenzzustand	der Tragfähigkeit
	Nachweis Feld	Χ η [m] [-]
	Nachweis E-E Feld 1 Stabilität Feld 1	0.00 OK 0.22 1.50 OK 0.01

Nachweise (GZG)

Nachweise im Grenzzust. der Gebrauchstauglichkeit

Proj.BezNeubau einer Seebrücke mit RestaurantSeite121Teilproj.:Teilprojekt1PositionE9Datum04.09.2015mb BauStatik S312.de2013.101ProjektSeebrücke

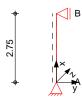
Nachweis	Fel d	X		η
		[m]		[-]
Verformuna	Kragarm links	0.00	OK	0.01

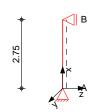
Proj.Bez Neubau einer Seebrücke mit Restaurant Seite

Teilproj.: Teilprojekt1

Datum 04.09.2015 mb BauStatik S404.de 2013.101

Position Projekt 122 E10 Seebrücke


Pos. E10


Stahlstütze

<u>System</u>

Stahlstütze, DIN EN 1993-1-1: 2010-12

M 1: 150

Abmessungen Mat./Querschnitt l [m] 2.75

Material

Profil

S 235 ROHR 127.0-4.0

Aufl ager

Lager	Χ	$K_{T, z}$	$K_{R, y}$	K _{Т, у}	$K_{R, z}$	
	[m]	[kN/m] kN	m/rad]	[kN/m ľ kľ	Nm/rad ∏	kNm/rad]
В	2.75	fest	frei	fest	frei	fest
A	0.00	fest	frei	fest	frei	fest

Kni ckl ängen

 $L_{cr,y} = 2.75 \text{ m}$ $L_{cr,z} = 2.75 \text{ m}$ $L_{cr,LT} = 2.75 \text{ m}$

Ki ppl änge Lagerung

 $L_{cr,LT} = 2.75 \text{ m}$ unten: Gabel, oben: Gabel

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

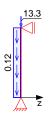
Gk Qk. N Ständige Einwirkungen Kategorie A - Wohn- und

Aufenthal tsräume

Bel astungen

Belastungen auf das System

<u>Grafik</u>


Belastungsgrafiken (Einwirkungsbezogen)

Qk. N

Ei nwi rkungen

Gk

Qk. N

Proj.BezNeubau einer Seebrücke mit RestaurantSeite123Teilproj.:Teilprojekt1PositionE10Datum04.09.2015mb BauStatik S404.de2013.101ProjektSeebrücke

Streckenlasten in x-Richtung Einw. Gk <u>Punktlasten</u> in x-Richtung Einzellasten Komm. a F_x ey e [m] [kN] [cm]

Einw. Gk Einw. Qk.N (a)

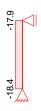
aus Pos. 'E9', Lager 'A' (Seite 120)

Kombi nati onen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

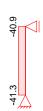
ständi g/vorüberg.

 $\begin{array}{cccc} \underline{Ek} & \Sigma & (\gamma \ ^*\psi \ ^*EW) \\ 1 & 1.35 \ ^*Gk \\ 2 & 1.35 \ ^*Gk & +1.50 \ ^*Qk. \ N \end{array}$


Bem. -schni ttgrößen

Bemessungsschnittgrößen Theorie I. Ordnung

<u>Grafik</u>


Schnittgrößen (je Kombination)

Komb. 1

 N_d

Komb. 2

 N_d

Tabel I e

Schnittgrößen (je Kombination)

Komb.	1
Komb.	2

Ges.	X	N_d
	[m]	[kN]
	2. 75	-17. 92 [*]
	0.00	-18.37*
<u> </u>	2. 75	-40.88*
	0.00	-41.33*

Mat./Querschnitt

Material - und Querschnittswerte nach DIN EN 1993

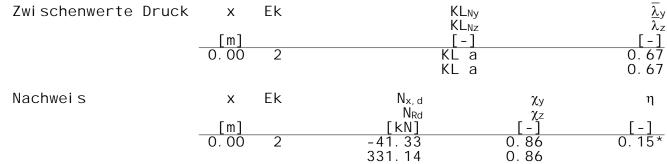
Materi al

Material	f_{yk}	E
	[N/mm²]	[N/mm ²]
S 235	235	210000

w : warm hergestellt

Querschni ttsgrafik

<u>Grafik</u>


Nachweise (GZT)	Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993
<u>Ouerschklasse</u> c/t-Verhältnis	Maßgebende Querschnittsklasse: Klasse 1
Nachweis E-E Abs. 6.2	Nachweis der Biege- und Querkrafttragfähigkeit x Ek Nx,d My,d Vz,d σ_d η $M_{z,d}$ $V_{y,d}$ τ_d
	[m] [kN] [kNm] [kN] [N/mm ²] [-] 2.75 2 -40.88 0.00 0.00 26.38 0.11 0.00 0.00 0.00

	[]		[.,,,]	[]	[]	L	LJ
	2.75	2	-40.88	0. 00	0.00	26. 38	0. 11
				0.00	0.00	0.00	
						0.00	
	0.00	2	-41.33	0.00	0.00	26. 67	0. 11*
				0.00	0.00	0.00	
						0.00	
<u>Stabilität</u>	Nachwei	s de	er Stabili	tät			

GL: Gabellager

0. 00 1. 10 Angriffspunkt der Last: Globale Beiwerte cm $Z_p =$ Teilsicherheitsbeiwert: $\gamma_{m, 1} =$

Charakteristische Auflagerkräfte Aufl agerkräfte

	Proj.Bez	Neubau e	iner Seeb	brücke mit Restaurant		Seite	125
	Teilproj.:	Teilprojek	:t1			Position	E10
	Datum	04.09.201	15 r	mb BauStatik S404.de	2013.101	Projekt	Seebrücke
Char. A	ufl ager	kr.	Aufl.	F _V ,		F _{Hz, k}	F _{Hy, k}
Einw. G	k		A	[kN 13.6		[kN] 0.00	[kŇ] 0.00
EIIIW. G	K		В	0.0		0.00	0.00
Einw. Q	k N		Ā	15. 3	<u>~</u>	0.00	0.00
Li iiw. Q	.10. 10		В	0.0		0. 00	0.00
Zusammei	nfassung	1	Zusamr	menfassung der	Nachwei se		
<u>Nachwei</u>	se (GZT)	_	Nachwe	eise im Grenzz	ustand der	Tragfähi gke	;i t
			Nachwe	eis		X [m]	η [-]
			Nachwe Stabil	eis E-E Iität		0. 00 0. 00	OK 0.11 OK 0.15

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite Teilproj.: Teilprojekt1

04.09.2015 Datum

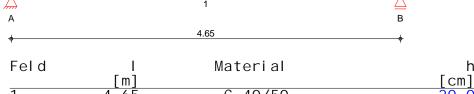
mb BauStatik S200.de 2013.101

Position Projekt

indir.

K1 Seebrücke

126


<u>Pos. K1</u>

Stb.-Vollplatte

System

Einachsig gespannte Platte

M 1:45

Abmessungen Mat./Querschnitt

4.65 C 40/50 20.0 Lager b Art $K_{T,z}$ [m]kN/m] [cm] 0.00 $\overline{\mathsf{A}}$ <u>15. 0</u> indir. fest

15.0

Ei nwi rkungen

Aufl ager

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N Ständige Einwirkungen Kategorie A - Wohn- und Aufenthal tsräume

4.65

fw

kN/m

fest

Erläuterungen

feldweise (fw)

В

Gk

Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.


Bel astungen

Belastungen auf das System

Grafi k

Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen

Qk. N

Streckenlasten

Gleichlasten in z-Richtung Feld Komm.

Einw. Gk Einw. Qk. N

Ei gengew (a)

1

(b)

а [m][kN/m²] [m]5.00 0.00 4.65 1.50 0.00 4.65 4.65 4. 25 0.00

(a)

Putz + Belag

0.40 + 1.1 =1.50

(b)

Nutzlast C1 für Schulräume. Cafes.

Restaurants. Lesesäle

Leichte Trennwand

3.0 =3.00 kN/m 1. 25 25 kN/m 4.25 kN/m

Proj.Bez Neubau einer Seebrücke mit Restaurant

Teilprojekt1

Seite

127 K1

Teilproj.: Datum

04.09.2015

mb BauStatik S200.de 2013.101

Position Projekt

Seebrücke

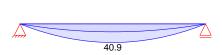
Kombi nati onen Grundkombination Ed

gemäß DIN EN 1992-1-1 und DIN EN 1990

 $(\gamma *_{\Psi} * EW (Felder: 1,..,n))$

Bem. -schni ttgrößen

Bemessungsschni ttgrößen


Grafi k

Schnittgrößen (Umhüllende)

Kombi nati onen

Moment $M_{y,d}$ [kNm/m]

Querkraft $V_{z,d}$ [kN/m]

Mat. /Querschnitt

Material - und Querschnittswerte nach DIN EN 1992-1-1: 2011-01

Material

Material	f_{yk}	f_{ck}	E
	[N/mm²]	$[N/mm^2]$	$[N/mm^2]$
C 40/50		40	35000
B 500MA	500		200000

Querschni tt

Art	h	b/h	Α	Ι _ν
	[cm]		$[cm^2]$	$[cm^4]$
PL	20. 0	5.0	2000	66667

Exposi ti onskl assen

Exposi ti onskl assen

Abs. 4.2, 4.4

Kante		Kommentar
oben	XC1	trocken oder ständig nass
unten	XC3	mäßige Feuchte
	XD1	mäßige Feuchte

Bewehrungsanordnung Achsabstände, Betondeckungen

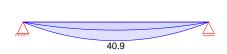
_	Cmi n, o	ΔC_dev , o	d' o	Cmi n, u	ΔC dev, u	d' u
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Feld 1	10	10	23	40	15	65

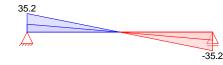
Bemessung (GZT) für den Grenzzustand der Tragfähigkeit nach DIN EN

1992-1-1: 2011-01

Bem. -schni ttgrößen

Bemessungsschni ttgrößen


<u>Grafik</u>


Schnittgrößen (Umhüllende)

Kombi nati onen

Moment $M_{y,d}$ [kNm/m]

Querkraft $V_{z,d}$ [kN/m]

Proj.BezNeubau einer Seebrücke mit RestaurantSeite128Teilproj.:Teilprojekt1PositionK1Datum04.09.2015mb BauStatik S200.de2013.101ProjektSeebrücke

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

Fel	d	1
	u	

X	My, d, mi n	My, d, max	$V_{z,d,min}$	$V_{z,d,max}$
[m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]
0.00	0.00	0.00	15. 11	35. 22
0.08	1. 12	2.60	14.63	34.09
0.08	1. 12	2.60	14.62	34.09
2.33	17. 57	40. 95	0.00	0.00
4.57	1. 12	2.60	-34.09	-14.62
4. 58	1. 12	2.60	-34.09	-14.62
4. 65	0.00	0.00	-35.22	-15.11

Bi egung Abs. 6.1

Bemessung für Bi egebeanspruchung

Feld 1

X	ŁΚ	m _{yd, o}	x/d _o	Z_0	$a_{s,o}$	$a_{\mathrm{s,o,erf}}$
		m _{yd, u}	x/d _u	Z_{u}	a _{s, u}	$a_{s,u,erf}$
[m]		[kNm/m]		[cm]	$[cm^2/m]$	$[cm^2/m]$
(L = 4.	65 m)					
0.00	1	_	-	-	_	1. 28e
	1	-	0.002	13. 5	_	3.83 _M
0.08a	1	1. 12	_	_	_	1. 28 _e
	2	2.60	0.023	13.4	0.42	3.83м
2.33*	1	17. 57	-	=	=	=
	2	40. 95	0. 129	12.8	7. 02	7. 02
4.58a	1	1. 12	_	_	-	1. 28 _e
	2	2.60	0.023	13.4	0.42	3.83м
4. 65	1	_	_	_	_	1. 28 _e
	1	-	0.002	13. 5	_	3.83_{M}

<u>Querkraft</u> Abs. 6.2

Bemessung für Querkraftbeanspruchung

Fel	d	1

Х	ĿΚ	V Ed	θ	VRd, max	VRd, c	asw, erf
[m]		[kN/m]	[°]	[kN/m]	[kN/m][c	m^2/m^2]
(L = 4.	65 m)					
0.00	2	35. 22	18.4	485. 96	_	_
0.08a	2	34.09	18.4	485. 96	84.70	-
2.33	1	-	18.4	485. 96	84.70	-
4.58a	2	34.09	18.4	485. 96	84.70	_
4 65	2	35 22	18 4	485 96	_	_

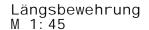
Bewehrungswahl

Mi ndeststabanzahl

gemäß 9.3.1.1(3): 5 [pro m]

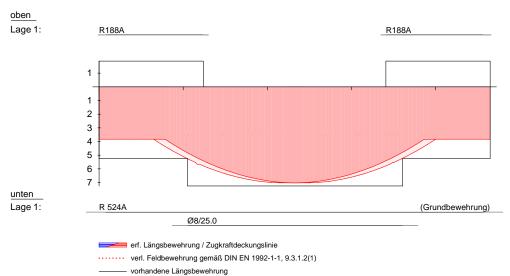
untere

Längsbewehrung


Feld		gew.	a_s	a	I	l _{bd, l}	l bd, r	Lage
		Ü	$[cm^2/m]$	[m]	[m]	[m]	[m]	J
1	GB	R 524A	5. 24	-0. 15	4. 95	0.23 _h	0. 23 _h	1
	Ø	8/25.0	2. 01	0.87	2. 92	0.18	0. 18	1

obere

Längsbewehrung


Aufl.	gew.	a_s [cm ² /m]	a [m]	 [m]	_{bd,} [m]	l _{bd,r} [m]	Lage
Α	R188A	1. 88	-0.01	1. 31	0.09	0.06	1
В	R188A	1.88	-1.30	1.31	0.06	0.09	1

(Längen inkl. Verankerungslängen, ohne Stöße)

as

 $[cm^2/m]$

Nach DIN EN 1992-1-1, 9.3.1.1 ist für die untere Bewehrung eine Querbewehrung von mindestens 20% der vorhandenen Zugbewehrung anzuordnen.

Querkraftbewehrung

Es ist keine rechnerische Querkraftbewehrung erforderlich.

Aufl agerkräfte

Auflagerkräfte Träger

Char. Auflagerkr.

Einw. Gk

B 15.11 15.11 Ei nw. Qk. N A 9.88 9.88 B 9.88 9.88

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite Teilproj.: Teilprojekt1

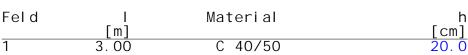
04.09.2015 mb BauStatik S200.de 2013.101 Datum

Position Projekt Seebrücke

130 K2

Pos. K2

Stb.-Vollplatte


System

Einachsig gespannte Platte

M 1:30

Abmessungen Mat. /Querschnitt

Aufl ager

Lager	X	b	Art	$K_{T,z}$
Ü	[m]	[cm]		[kN/m]
A	0.00	15.0	indir.	fest
В	3.00	15.0	indir.	fest

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N Ständige Einwirkungen Kategorie A - Wohn- und

fw

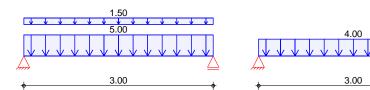
Aufenthal tsräume

Erläuterungen

feldweise (fw)

Die Lasten der Einwirkung werden als feldweise

wirkend aufgeteilt.


Bel astungen

Belastungen auf das System

Grafi k

Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen

Streckenl asten

in z-Richtung

Gl ei chl asten Feld Komm.

Gk

q_{ii} [<u>kN/</u>m²¹ а [m]kN/m²] [m]0.00 3.00 5.00 Ei gengew 0.00 3.00 1.50 (a) 3.00 4.00 0.00 (b)

Einw. Gk

Einw. Qk. N

0.40 + 1.1 =1.50

(a)

Putz + Belag

Qk. N

kN/m

(b)

Nutzlast Z für Dachterassen usw.

4.00 4.0 = kN/m

Neubau einer Seebrücke mit Restaurant Proj.Bez

mb BauStatik S200.de 2013.101

Seite Position Projekt

K2 Seebrücke

131

Kombi nati onen Grundkombination Ed

Teilproj.:

Datum

gemäß DIN EN 1992-1-1 und DIN EN 1990

 $(\gamma^*\psi^* \to EW (Felder: 1,...,n))$

Bem. -schni ttgrößen Bemessungsschni ttgrößen

Teilprojekt1

04.09.2015

Grafi k Schnittgrößen (Umhüllende)

Kombi nati onen Moment $M_{y,d}$ [kNm/m] Querkraft $V_{z,d}$ [kN/m]

Material - und Querschnittswerte nach DIN EN 1992-1-1: 2011-01 Mat. /Querschni tt

Materi al Material $[N/mm^2]$ [N/mm²] 35000 C 40/50 B 500MA 500 200000

Querschnitt Art b/h h cm^2 [cm] $\overline{\mathsf{PL}}$ 20.0

Exposi ti onskl assen Expositionsklassen Abs. 4.2, 4.4

Kante Kommentar

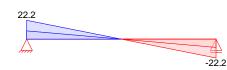
XC1 trocken oder ständig nass oben unten XC3 mäßige Feuchte

XD1 mäßiğe Feuchte

Bewehrungsanordnung Achsabstände, Betondeckungen

d'_o $\Delta \mathsf{C}_{\mathsf{dev}, \, \mathsf{o}}$ $\Delta \mathsf{C}_{\mathsf{dev}, \mathsf{u}}$ ď u Cmi n, o Cmi n. u [mm] [mm] [mm] [mm] mm] Feld 1 40

für den Grenzzustand der Tragfähigkeit nach DIN EN Bemessung (GZT)


1992-1-1: 2011-01

Bem. -schni ttgrößen Bemessungsschni ttgrößen

Grafi k Schnittgrößen (Umhüllende)

Kombi nati onen Moment $M_{y,d}$ [kNm/m] Querkraft $V_{z,d}$ [kN/m]

 Proj.Bez
 Neubau einer Seebrücke mit Restaurant
 Seite
 132

 Teilproj.:
 Teilprojekt1
 Position
 K2

 Datum
 04.09.2015
 mb BauStatik S200.de
 2013.101
 Projekt
 Seebrücke

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

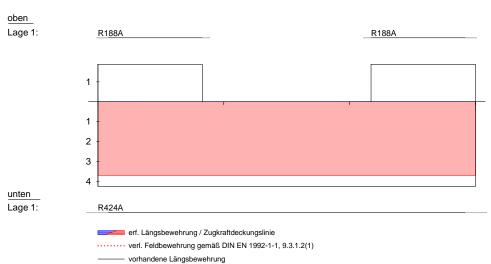
	X	My, d, min	Wy, d, max	$V_{z,d,min}$	$V_{z,d,max}$
	[m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]
Feld 1	0.00	0.00	0.00	9. 75	22. 16
	0. 08	0.71	1. 62	9. 26	21. 05
	1. 50	7. 31	16.62	0.00	0.00
	2. 92	0.71	1. 62	-21.05	-9. 26
	2. 93	0.71	1. 62	-21.05	-9. 26
	3 00	0 00	0 00	-22 16	-9 75

<u>Bi egung</u>	Bemessung für Bi egebeanspruchung						
Abs. 6.1	X	Ĕk	myd, o	x/d _o	Zo	as, o	$\mathbf{a}_{s,o,erf}$
			m _{yd, u}	x/d _u	Z_{u}	a _{s, u}	$a_{s,u,erf}$
	[m]		[kNm/m]		[cm]	$[cm^2/m]$	$[cm^2/m]$
Feld 1	(L = 3.	00 m)					
	0.00	1	-	_	-	_	0.52e
		1	-	0.002	14.0	_	3.69м
	0. 08a	1	0. 71	-	_	_	0. 52 _e
		2	1. 62	0. 018	14.0	0. 25	3.69м
	1. 50*	1	7. 31	_	_	_	_
		2	16.62	0.063	13.7	2.65	3.69 _M
	2. 93a	1	0. 71	_	_	_	0. 52e
		2	1. 62	0. 018	14.0	0. 25	3.69м
	3.00	1	_	_	_	_	0. 52e
		1	_	0.002	14.0	_	3.69м

<u>Querk</u>	<u>craft</u>
Abs.	6. 2
Feld	1
	•

Bemessung für Querkraftbeanspruchung

_ X	Ēk	VEd	θ	VRd, max	V _{Rd, c}	asw, erf
[m]		[kN/m]	[°]	[kN/m]	[kN/m][c	m^2/m^2]
(L = 3.	00 m)					
0.00	2	22. 16	18.4	512.55	_	_
0.08a	2	21.05	18.4	512.55	87. 97	_
1.50	1	_	18.4	512.55	87. 97	_
2. 93a	2	21.05	18.4	512.55	87. 97	_
3.00	2	22. 16	18.4	512. 55	_	_


<u>Bewehrungswahl</u>

untere Längsbewehrung	Feld	gew.	a_s [cm ² /m]	a [m]	 [m]	l _{bd, l} [m]	l _{bd,r} [m]	Lage
0	1	R424A	4. 24	-0.09	3. 18	0. 17 _h	0. 17 _h	1
obere Längsbewehrung	Aufl.	gew.	a_s [cm ² /m]	a [m]	 [m]	l _{bd, l} [m]	l _{bd,r} [m]	Lage
	Α	R188A	1. 88	-0.01	0. 90	0.09	0.06	1
	В	R188A	1. 88	-0.89	0.90	0.06	0.09	1

(Längen inkl. Verankerungslängen, ohne Stöße)

Längsbewehrung M 1:30 as

[cm²/m]

Querkraftbewehrung

Es ist keine rechnerische Querkraftbewehrung erforderlich.

Aufl agerkräfte

Einw. Gk

Einw. Qk. N

Auflagerkräfte Träger

Char. Auflagerkr.

charakteristische Auflagerkräfte (je Einwirkung)

Auti.	⊦ _{z,k,min}	$F_{z, k, max}$
	[KN]	[kN]
A	9. 75	9. 75
В	9. 75	9. 75
A	6.00	6.00
В	6. 00	6.00

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite Position 134 K3

Teilproj.: Datum

Teilprojekt1 04.09.2015

mb BauStatik S200.de 2013.101

Projekt

Seebrücke

Pos. K3 Stb.-Vollplatte System Einachsig gespannte Platte M 1:30 В Fel d Material Abmessungen Mat./Querschnitt [m][cm] C 40/50 3.00 20.0 Aufl ager b Art $K_{T,z}$ Lager Х kN/m] [m] [cm] 0.00 15. O indir. Ā fest В 3.00 15.0 indir. fest Einwirkungen nach DIN EN 1990: 2010-12 Ei nwi rkungen Gk Ständige Einwirkungen Kategorie A - Wohn- und Qk. N fw Aufenthal tsräume Windlasten Qk. W LG 98 Qk. W (min/max Werte) Erläuterungen Gruppen (LG) Einwirkungen, die der gleichen Lastgruppe zugeordnet werden, können nicht gleichzeitig auftreten. feldweise (fw) Die Lasten der Einwirkung werden als feldweise wirkend aufgeteilt. Bel astungen Belastungen auf das System Grafi k Belastungsgrafiken (Einwirkungsbezogen) Qk. N Ei nwi rkungen Gk 1.50 1.55 Qk. W

1.55

Proj.Bez Neubau einer Seebrücke mit Restaurant Seite 135 K3 Teilproj.: Teilprojekt1 Position 04.09.2015 mb BauStatik S200.de 2013.101 Projekt Seebrücke Datum

0.00

Streckenlasten in z-Richtung

Gleichlasten Feld K

iii as toii				
Komm.	а	S	qı i	q re
	[m]	[m]	[kN/m²]	[kN/m²]
Ei gengew	0. 00	3.00		5. 00
0 0	0.00	3 00		1 50

Einw. Qk. N

Einw. Gk

Putz + Belag

Einzellasten

0.40 + 1.1 =1.50 kN/m

(a) (b)

Nutzlast Z für Dachterassen usw.

4.0 =4.00 kN/m

4.00

Punktl asten in z-Richtung

Einw. Gk

(a) _ Einw. Qk. N (a) Einw. Qk. W (a)

(a)

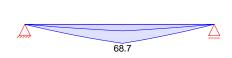
aus Pos. 'E7.1', Lager 'A' (Seite 111)

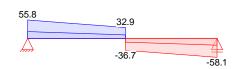
Kombi nati onen Grundkombination Ed gemäß DIN EN 1992-1-1 und DIN EN 1990

Ek	Σ (γ *ψ * EW	(Fel der: 1, , n))
1	1. 00*Gk	
2	1. 35*Gk	+1.50*Qk.N
3	1. 00*Gk	+1.50*0k.W

Bem. -schni ttgrößen

Bemessungsschni ttgrößen


<u>Grafik</u>


Schnittgrößen (Umhüllende)

Kombi nati onen

Moment $M_{y,d}$ [kNm/m]

Querkraft $V_{z,d}$ [kN/m]

Mat./Querschnitt

Material - und Querschnittswerte nach DIN EN

1992-1-1: 2011-01

Material

Material		f _{yk} [N/mm²]	f _{ck} [N/mm²]	E [N/mm²]
C 40/50 B 500MA		500	40	35000 200000
Art	h [cm]	b/h	A [cm ²]	l _y [cm ⁴]
PL	20. 0	5.0	2000	66667

Expositionsklassen

Querschni tt

Expositionsklassen

Kante

Abs. 4.2, 4.4

Kommentar XC1 trocken oder ständig nass oben unten

XC3 mäßige Feuchte XD1 mäßige Feuchte

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 136 K3 Position Teilproj.: Teilprojekt1 04.09.2015 mb BauStatik S200.de 2013.101 Projekt Seebrücke

Bewehrungsanordnung Achsabstände, Betondeckungen

d' o ď' u $\Delta c_{\text{dev,_u}}$ Cmi n, o $\Delta c_{ ext{dev, o}}$ Cmi n, u [mm] [mm] [mm] [mm] [mm] [mm] 40

Bemessung (GZT)

für den Grenzzustand der Tragfähigkeit nach DIN EN

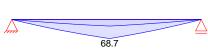
1992-1-1: 2011-01

Bem. -schni ttgrößen

Datum

Bemessungsschni ttgrößen

Grafi k


Feld 1

Schnittgrößen (Umhüllende)

Kombi nati onen

Moment $M_{y,d}$ [kNm/m]

Querkraft $V_{z,d}$ [kN/m]

as, o

as, o, erf

 3.78_{M}

Tabel I e

Schnittgrößen (Umhüllende)

Feld 1

X IVIy, d, min IVIy, d, max Vz, d, min	∨z,d,max
[m] [kNm/m] [kNm/m] [kN/m]	[kN/m]
0.00 0.00 0.00 20.39	55. 77
0. 08 1. 51 4. 14 19. 90	54.66
0. 08	54.66
1. 55 23. 79 68. 69 10. 31	32.86
1. 55 23. 79 68. 69 -36. 66	-11.70
2. 92	-20.63
2. 93 1. 57 4. 31 -56. 97	-20.63
3. 00 0. 00 0. 00 -58. 08	-21.12

x/d_o

Bi egung Abs. 6.1 Bemessung für Biegebeanspruchung Ĕk

m_{yd, o}

Fel	d	1

		m _{yd, u}	x/d _u	Z_{u}	a _{s, u}	as, u, erf
[m]		[kNm/m]		[cm]		$[cm^2/m]$
(L = 3.	00 m)					
0.00	1	-	_	-	_	2.16 _e
	1	_	0.002	13.7	_	3.78м
0.08a	3	1. 51	-	_	_	2.16e
	2	4.14	0. 030	13. 6	0. 67	6. 21 _f
1. 55*	3	23. 79	_	_	_	_
	2	68. 69	0. 219	12.4	12.41	12.41
2. 93a	3	1. 57	_	-	_	2.16e
	2	4.31	0.030	13.6	0.70	6. 21 _f
3.00	1	_	_	_	_	2. 16 _e

0.002

13.7

Querkraft Abs. 6.2

Bemessung für Querkraftbeanspruchung

Feld 1

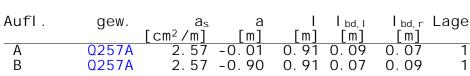
X	ŁΚ	V_{Ed}	θ	$V_{Rd,max}$	VRd, c	a _{sw, erf}
[m]		[kN/m]	[°]	[kN/m]	[kN/m][c	m^2/m^2
(L = 3)	. OO m)					
0.00	2	55.77	18.4	494. 70	_	-
0.08a	2	54.66	18.4	494.70	93.03	_
1. 55	2	36.66	18.4	494.70	93.03	_
2. 93a	2	56. 97	18.4	494.70	93.03	_
3.00	2	58.08	18.4	494.70	_	_

Proj.Bez Neubau einer Seebrücke mit Restaurant Seite 137 K3 Teilproj.: Teilprojekt1 Position

04.09.2015 mb BauStatik S200.de 2013.101 Datum

Projekt

Seebrücke


Bewehrungswahl |

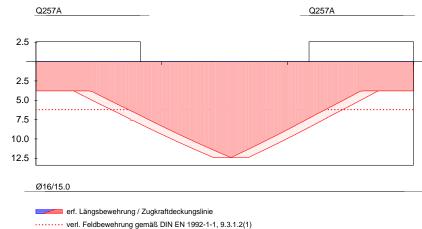
Mi ndeststabanzahl

gemäß 9.3.1.1(3): 5 [pro m]

untere Längsbewehrung Fel d I_{bd, I} I_{bd, r} Lage a_s $[cm^2/m]$ $\lceil m \rceil$ [m]ø16/15.0 13.40 -0.09 3. 18 0.16_{h} 0. 16_h

obere Längsbewehrung

(Längen inkl. Verankerungslängen, ohne Stöße)


Längsbewehrung M 1:30

as

 $[cm^2/m]$

unten Lage 1:

vorhandene Längsbewehrung

Nach DIN EN 1992-1-1, 9.3.1.1 ist für die untere Bewehrung eine Querbewehrung von mindestens 20% der vorhändenen Zugbewehrung anzuordnen.

Querkraftbewehrung

Es ist keine rechnerische Querkraftbewehrung erforderlich.

Aufl agerkräfte

Auflagerkräfte Träger

Char. Auflagerkr.

charakteristische Auflagerkräfte (je Einwirkung) Aufl. $F_{z, k, min}$ [kN]

Ei nw.	Qk.	N

Einw. Gk

Einw. Qk. W

Autt.	Γz, k, mi n	Гz, k, max
	[kN]	[kN]
A	21. 28	21. 28
В	22. 08	22. 08
A	18. 02	18. 02
В	18. 85	18. 85
A	-0.60	-0.60
В	-0.64	-0.64

Neubau einer Seebrücke mit Restaurant Proj.Bez

Seite

138

K4

Teilproj.: Datum

Teilprojekt1 04.09.2015

mb BauStatik S312.de 2013.101

Position Projekt

Seebrücke

Pos. K4

Unterzug - Stahträger

System

Durchl aufträger

M 1:85

System z-Richtung

Abmessungen Mat./Querschnitt

Feld	[m]	Lage [°]	Achsen	Materi al	Profil
KI	2. 10	0.0	fest	S 235	HEB 260
1	5. 75	0.0	fest		
Кr	2 10	\cap \cap	fast		

Aufl ager

X	b	Art	$K_{T, z}$	$K_{R, \gamma}$
[m]	[cm]		[kN/m]	[kNm/rad]
2. 10	20. 0		fest	frei
7.85	20. 0		fest	frei
	2.10		[m] [cm] 2.10 20.0	[m] [cm] [kN/m] 2.10 20.0 fest

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N

<u>Ständige Einwirkungen</u> Kategorie C - Versammlungsräume

fw

Erläuterungen

feldweise (fw) Die Lasten der Einwirkung werden als feldweise

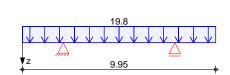
wirkend aufgeteilt.

Bel astungen

Belastungen auf das System

Ei gengewi cht

Qk. N


Grafik

Belastungsgrafiken (Einwirkungsbezogen)

а

Ei nwi rkungen

Ore

αιі

Streckenlasten in z-Richtung

Feld Komm.

Gleichlasten

Gk

			_	7 11	-J. C	_
		[m]	[m]	[kN/m]	[kN/m]	[cm]
ΚI	Ei gengew	0.00	9. 95		0. 93	0.0
_(a) KI	0 0	0.00	9. 95		30. 23	0.0
(a) KI		0.00	9. 95		19. 76	0.0

S

Einw. Gk

Einw. Qk. N

Proj.BezNeubau einer Seebrücke mit RestaurantSeite139Teilproj.:Teilprojekt1PositionK4Datum04.09.2015mb BauStatik S312.de2013.101ProjektSeebrücke

(a) aus Pos. 'K1', Lager 'A', Faktor = 2.00 (Sei te 129)

Kombinationen Grundkombination Ed Schnittgrößen gemäß DIN EN 1990

Ek	Σ (γ*ψ * EW (Felc 1.35*Gk	der: 1,,n))
1	1. 35*Gk	
		(1)
3	1. 00*Gk	
3	1. 35*Gk	+1.50*Qk.N
		(1, 3) +1.50*Qk.N
4	1. 00*Gk	+1.50*Qk.N
		(2)
5	1. 00*Gk	(2) +1.50*Qk.N
		(3)
6	1. 35*Gk	(3) +1.50*Qk.N
		(1, 2)
7	1. 00*Gk	(1, 2) +1. 50*Qk. N
		(1, 3) +1.50*Qk.N
8	1. 35*Gk	
		(2)
9	1. 35*Gk	(2) +1.50*Qk.N
		(2, 3)
10	1. 00*Gk	(2, 3) +1.50*Qk.N
		(1)
11	1. 35*Gk	+1. 50*Qk. N
		(3)
		• •

q-st. Komb. Ed, perm

Ekperm	Σ (γ *ψ *	EW (Felder: 1,,n)) +0.60*0k N
12	1. 00*Gk	+0.60*Qk.N
		(1, 3)
13	1. 00*Gk	+0. 60*Qk. N
		(2)
14	1. 00*Gk	

 $V_{z, d, min}$

 $V_{z, d, max}$

Ek

My, d, max

[kNm]

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

My, d, min

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

		[IZIMIII]	[IZIN]	[IZIN]	
Kragarm links	0.00 0.00	- 0.00	- 0.00	- 0.00	_
_	2. 10 -158. 1	1 -68.69	2 -150.6	1 -65.42	<u>2</u>
Feld 1	0.00 -158.1	3 -68.69	4 78.19	5 217.50	6
	2.88 -5.31	7 203.58	8 -11.37	5 11.37	6
	5. 75 -158. 1	3 -68.69	4 -217.5	9 - 78. 19	10
Kragarm rechts	0.00 -158.1	3 -68.69	2 65.42	2 150.57	3
_	2. 10 0. 00	- 0.00	- 0.00	- 0.00	-
<u>Nachweise (GZT)</u>	Nachweise im Gr	enzzustand d	ler Tragfäh	nigkeit nad	ch
	DIN EN 1993				
<u>Nachweis E-E</u>	Nachweis der Bi		erkrafttrag	yfähi gkei t	
Abs. 6.2	x Ek QS/	My, d	$V_{z,d}$	$\sigma_{\sf d}$	η
	Pkt			$ au_{d}$	
	F 7	51 N 3	51 N/3 - 5N	$\sigma_{v,d}$	
	[m]	[kNm]	[kN] [N	N/mm ²] [-]
	(1 0 10)				
Kragarm links	(L = 2.10 m)	450.00	450 57	00 70 0	
	2. 10 1 1/2	-158.09 -	-150. 57	93. 78 0.	60*

140 K4

Seebrücke

	Х	Ek	QS/ Pkt	M _{y, d}	`	$V_{z, d}$	σ_{d} $ au_{d}$	η
	[m]			[kNm]	[k	(N]	$\sigma_{ m V,d}$ [N/mm 2]	[-]
					_		60. 73 140. 93	
Feld 1	(L = 5 0.00	. 75 6	m) 1/2	-158. 09	217.	50	93. 78 87. 73 178. 57	0. 76*
	0. 32	6	1/2	-92. 28	194.	60	54. 74 78. 50 146. 56	0. 62
	2. 88	8	1/3	203. 58	0.	00	177. 03 0. 00 177. 03	0. 75
	5. 75	9	1/2	-158. 09	-217.	50	93. 78 87. 73 178. 57	0. 76
Kragarm rechts	(L = 2 0.00	. 10	m) 1/2	-158. 09	150.	57	93. 78 60. 73 140. 93	0.60*
<u>Stabilität</u>	Nachwe	is d	ler Sta	bilität				
Festhaltungen Kragarm links Feld 1 Kragarm rechts	2.10 G	L L, 5 L	<u>iten [m</u> 5.75 GL		Fel danf	<u>ang</u>		
Globale Beiwerte	Angrif Teilsi	fspu cher	ınkt de heitsb	r Last: eiwert:			$f_p = -13.00$ $f_1 = 1.10$	CM
Zwischenwerte	x [m]	Ek	KL _y Γ - 1	N _{cr} [kN]	C ²	C - 1		
Kragarm links		ni t t 1	1: L _{cr}	= 4.20 6027.51] [kNm] 4 1417.28	0.46
Feld 1	(Absch 2.88	ni tt 8		= 5.75 3215.89	m) 459	1. 19	9 615.08	0. 70
Kragarm rechts	(Absch 0.00	ni tt 3		= 4.20 6027.51		2.84	4 1417. 28	0.46
Nachweis	X	Ek	Му		d χL	Т	f χ _L Tmod	η
Kragarm links	[m] (Absch 2.10		[kNm : 1: L _{cr} -158.0	= 4.20	m)		[-] [-] 84 1.00	0. 58*
Feld 1	(Absch 2.88	ni t t 8	2: L _{cr}	= 5.75 8 273.88	m) 3 0.87	7 0.	96 0.91	0. 82*
Kragarm rechts	(Absch 0.00		3: L _{cr} -158.0	= 4.20 9 273.88	m) 8 0.98	3 0.	84 1.00	0. 58*

Proj.BezNeubau einer Seebrücke mit RestaurantSeite141Teilproj.:Teilprojekt1PositionK4

Datum 04.09.2015 mb BauStatik S312.de 2013.101

Position K4
Projekt Seebrücke

Nachweise (GZG)
Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1993

<u>Verformungsnachweis</u> max. Verformungen

	X E	K W_Z	Wres	W_{zul}	η
	[m]	[mm]	[mm]	[mm]	[-]
Kragarm links	0.00 1	3 7.18	7. 18	14.00	0. 51
Felď 1	2.88 1	3 10.48	10.48	19. 17	0. 55
Kragarm rechts	2.10 1	3 7.18	7. 18	14.00	0. 51

<u>Auflagerkräfte</u> Charakteristische und Bemessungsauflagerkräfte

Char.	Auflagerkr.	Aufl.	F _{z, k, mi n}	F _{z, k, max}
	•		[kN]	[kN]
Ei nw.	Gk	A	154. 98	154. 98
		В	154. 98	154. 98
Ei nw.	Qk.N	A	-7.58	105. 90
		В	-7. 58	105. 90

Bemauflagerkräfte	Aufl.	F _{z, d, min} [kN]	EK	F _{z, d, max} 【KN】	EK
Komb. 510	A B	143. 61 143. 61	5 10	368. 07 368. 07	6

<u>Zusammenfassung</u> Zusammenfassung der Nachweise

<u>Nachweise (GZT)</u> Nachweise im Grenzzustand der Tragfähigkeit

Nachweis	Feld	X	η
		[m]	[-]
Nachweis E-E	Feld 1	0.00 01	(0.76
Stabilität	Feld 1	2.88 OI	(0.82

Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachwei s	Feld	X	r
		[m]	[-]
Verformung	Feld 1	2.88	OK 0.55

Neubau einer Seebrücke mit Restaurant Proj.Bez

Seite

142 K5

Teilproj.: 04.09.2015 Datum

Teilprojekt1

mb BauStatik S312.de 2013.101

Position Projekt

Seebrücke

Pos. K5

Unterzug - Stahträger

System

Durchl aufträger

M 1:85

System z-Richtung

Abmessungen Mat./Querschnitt

Feld	[m]	Lage [°]	Achsen	Materi al	Profil
KI	2. 10	0.0	fest	S 235	HEB 260
1	5. 75	0.0	fest		
Kr	2 10	\cap \cap	fest		

Aufl ager

Lager	Х	b	Art K _{T, z}	K _{R, y}
Ü	[m]	[cm]	[kN/m]	[kNm/rad]
A	2. 10	20. 0	fest	frei
В	7.85	20. 0	fest	frei

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N

Ständige Einwirkungen Kategorie C - Versammlungsräume

fw

Erläuterungen

feldweise (fw)

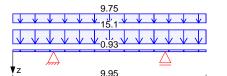
Die Lasten der Einwirkung werden als feldweise

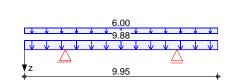
wirkend aufgeteilt.

Bel astungen

Belastungen auf das System

Ei gengewi cht

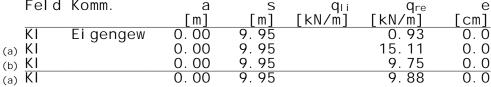



Qk. N

<u>Grafik</u>

Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen



Streckenlasten in z-Richtung

Gleichlasten Feld Komm.

Gk

Einw. Gk

Einw. Qk. N

(a) KI (b) KI 9.95 0.00 6.00 0.0

(a) aus Pos. 'K1', Lager 'A' (Sei te 129)

(b) aus Pos. 'K2', Lager 'A' (Seite 133)

<u>Kombi nati onen</u> Grundkombi nati on Ed Schnittgrößen gemäß DIN EN 1990

Ek	<u>Σ (γ*ψ * EW (Feld</u> 1.35*Gk	ler: 1,,n))
1	1. 35*Gk	+1.50*Qk.N
		(1)
3	1. 00*Gk	
3	1. 35*Gk	+1.50*Qk.N
		(1, 3) +1.50*Qk.N
4	1. 00*Gk	
		(2)
5	1. 00*Gk	+1.50*Qk.N
		(3)
6	1. 35*Gk	+1.50*Qk. N
		(1, 2) +1.50*Qk.N
7	1. 00*Gk	+1.50*Qk.N
		(1, 3) +1.50*Qk.N
8	1. 35*Gk	+1.50*Qk.N
		(2)
9	1. 35*Gk	+1.50*Qk.N
		(2, 3) +1.50*Qk.N
10	1. 00*Gk	+1.50*Qk.N
		(1)
11	1. 35*Gk	+1.50*Qk.N
		(3)

143 K5

Seebrücke

q-st. Komb. Ed, perm

Ekperm	Σ (γ *ψ *	EW (Felder: 1,,n)) +0.60*Qk.N
12	1. 00*Gk	+0. 60*Qk. N
		(1, 3)
13	1. 00*Gk	+0. 60*Qk. N
		(2)
14	1. 00*Gk	

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

Tabel I e

Schnittgrößen (Umhüllende)

	Х	My, d, min	ŁΚ	My, d, max	ŁΚ	V_{Z} , d, min	ŁΚ	$V_{z,d,max}$	ŁΚ
	[m]	[kNm]		[KNm]		[kN]		[kN]	
Kragarm links	0.00	0.00	_	0.00	-	0.00	_	0.00	_
	2. 10	-129. 3	1	-56.86	2	-123. 1	1	-54.16	2
Feld 1	0.00	-129. 3	3	-56.86	4	65. 01	5	177. 72	6
	2.88	-2.81	7	165. 57	8	-9.14	5	9.14	6
	5. 75	-129. 3	3	-56.86	4	-177. 7	9	-65.01	10
Kragarm rechts	0.00	-129.3	3	-56.86	2	54. 16	2	123. 14	3
-	2. 10	0.00	-	0.00	-	0.00	-	0.00	-

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

Nachweis E-E Nachweis der Biege- und Querkrafttragfähigkeit QS/ Abs. 6.2 x Ek My, d $V_{z,d}$ σ_{d} η Pkt τ_{d} $\sigma_{v,\,d}$ [m] [kNm] [kN] $\lceil N/mm^2 \rceil$

Kragarm links

(L = 2.10 m)

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 144 K5 Teilproj.: Position Teilprojekt1 04.09.2015 mb BauStatik S312.de 2013.101 Projekt Seebrücke Datum

		QS/ Pkt	My, d	$V_{z, d}$	$\sigma_{\sf d}$ $ au_{\sf d}$	η			
	[m]		[kNm]	[kN]	$\sigma_{\text{V,d}}$ [N/mm 2]	[-]			
	2. 10 1	1/2	-129. 29	-123. 14	76. 69 49. 67	0.49*			
					115. 25				
Feld 1	(L = 5.75 m))	100.00	477 70	7/ /0	0 (0*			
	0.00 6	1/2	-129. 29	177. 72	76. 69 71. 69	0.62*			
	0. 29 6	1/2	-80. 11	160. 67	145. 94 47. 52	0. 52			
					64. 81 121. 90				
	2.88 8	1/3	165. 57	0. 00	143. 97	0. 61			
		1 (0	100.00	477 70	0. 00 143. 97				
	5. 75 9	1/2	-129. 29	-177. 72	76. 69 71. 69	0. 62			
					145. 94				
Kragarm rechts	$(L = 2.10 \text{ m} \\ 0.00 \text{ 3}$) 1/2	-129. 29	123. 14	76. 69	0. 49*			
		., _	. = , . = ,	0	49. 67 115. 25	0,			
C+ahili+ä+	Nachwai a da	r C+01	SIII+8+		113. 23				
<u>Stabilität</u>	Nachweis der Stabilität								
Festhaltungen Kragarm links	x-Koordinaten [m] bzgl. Feldanfang 2.10 GL								
Feld 1 Kragarm rechts	0. 00 GL, 5. 75 GL 0. 00 GL								
<u> </u>	GL : Gabellager								
Globale Beiwerte	Bezugsschlankheitsgrad: $\lambda_1 = 93.91$ Trägheitsrad. des Gurtes: $i_{f,z} = 6.99$ cm								
	G			İf,		CM			
Verei nfachter Nachwei s	[m]	Cc vorhλ	zuΙλ	χ max M [KNm]	η			
Kragarm links	1 1 2.	10 0.5	59 0.38	1. 06	129.29	0. 36*			
Feld 1	8 1 5.	75 0.9	92 0.80	0.83	- 165.57	0. 97*			
Kragarm rechts	3 1 4.	20 0.5	59 0.38	1.06	129.29	0. 36*			
N / (070)									
<u>Nachweise (GZG)</u>	Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1993								
<u>Verformungsnachweis</u>	max. Verformungen								
	x Ek [m]		W_z [mm]	W _{res} [mm]	$W_{zul} \ [mm]$	η [-]			
Kragarm links Feld 1	0. 00 13 2. 88 13		5. 79 3. 54	5. 79 8. 54	14. 00 19. 17	0. 41 0. 45			
Kragarm rechts	2. 10 13		5. 79	5. 79	14.00	0.41			

Proj.BezNeubau einer Seebrücke mit RestaurantSeite145Teilproj.:Teilprojekt1PositionK5Datum04.09.2015mb BauStatik S312.de2013.101ProjektSeebrücke

A. El agadua Eta	01		D
<u>Auflagerkräfte</u>	Charakteristische	una	Bemessungsauflagerkräfte

Char. Auflagerkr.	Aufl.	F _{z, k, min}	F _{z, k, max}
Einw. Gk	A	[kN] 128.30	[kN] 128.30
	B	128. 30	128. 30
Einw. Qk.N	A	-6.09	85. 10
	В	-6. 09	85. 10
Bemauflagerkräfte	Aufl.	F _{z,d,min} EK	F _{z, d, max} EK
		[KN]	[kN]
Komb. 510	A	119. 16 5	300.85 6
	В	119. 16 10	300.85 9

<u>Zusammenfassung</u> Zusammenfassung der Nachweise

Nachweise im Grenzzustand der Tragfähigkeit

Feld	X	η
	[m]	[-]
Feld 1	0.00 0	K 0.62
Feld 1	4. 98 0	K 0.97
	Feld 1	[m] Feld 1 0.00 0

<u>Nachweise (GZG)</u> Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis	Fel d	X	η
		[m]	[-]
Verformung	Feld 1	2.88 0	K 0.45

Proj.Bez Neubau einer Seebrücke mit Restaurant

Seite

146

K6

fw

LG 98

Teilproj.: Datum

Teilprojekt1 04.09.2015

mb BauStatik S312.de 2013.101

Position Projekt

Seebrücke

Pos. K6

Unterzug - Stahträger

System

Durchl aufträger

M 1:85

System z-Richtung

Abmessungen Mat./Querschnitt

Feld	[m]	Lage [°]	Achsen	Materi al	Profil
KI	2. 10	0.0	fest	S 235	HEB 260
1	5. 75	0.0	fest		
Kr	2. 10	0.0	fest		

Aufl ager

Lager	Χ	b	$Art K_{T,z}$	$K_{R, y}$
J	[m]	[cm]	[kN/m]	[kNm/rad]
A	2. 10	20. 0	fest	frei
В	7.85	20.0	fest	frei

Ei nwi rkungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk Qk. N <u>Ständige Einwirkungen</u>

Qk. W

Kategorie C - Versammlungsräume Windlasten

Qk. W (min/max Werte)

Erläuterungen

Gruppen (LG) Einwirkungen, die der gleichen Lastgruppe

zugeordnet werden, können nicht gleichzeitig

auftreten.

feldweise (fw)

Die Lasten der Einwirkung werden als feldweise

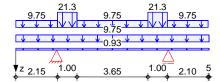
wirkend aufgeteilt.

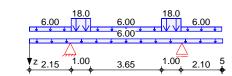
Bel astungen

Belastungen auf das System

Ei gengewi cht

Profil Fel d $[cm^2]$ kl-kr HEB 260


Grafi k


Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen

Gk

Qk. N

Proj.Bez Neubau einer Seebrücke mit Restaurant

mb BauStatik S312.de 2013.101

Seite Position Projekt 147 K6 Seebrücke

Qk.W

Teilproj.: Teilprojekt1

Datum

04.09.2015

<u>Streckenlasten</u> in z-Richtung

Einw. Gk

Einw. Qk. N

Einw. Qk.W

(a)

(b)

Gleich- und Blocklasten

	Feld	Komm.	а	S	qı i	q re	е
			[m]	[m]	[kN/m]	[kN/m]	[cm]
	ΚI	Ei gengew	0.00	9. 95		0. 93	0.0
(a`	KI	0 0	0.00	9. 95		9. 75	0.0
(b)			2. 15	1.00		21. 28	0.0
(a)	1/1		0.00	2. 15		9. 75	0.0
	ΚI		3. 15	3.65		9. 75	0.0
(b)	1/1		6.80	1.00		21. 28	0.0
(a)	171		7.80	2. 10		9. 75	0.0
(a)	17.1		0.00	9. 95		6.00	0.0
(b)	1/1		2. 15	1.00		18. 02	0.0
	ΚI		0.00	2. 15		6.00	0.0
(a)	KI		3. 15	3.65		6.00	0.0
(b)	1/1		6.80	1.00		18. 02	0.0
(a)	171		7.80	2. 10		6.00	0.0
(b)	17.1		2. 15	1. 00		-0.60	0.0
(b)	171		6.80	1.00		-0.60	0.0
, ,							

aus Pos. 'K2', Lager 'A' (Seite 133)

aus Pos. 'K3', Lager 'A' (Seite 137)

<u>Kombinationen</u> Grundkombination E_d Schnittgrößen gemäß DIN EN 1990

<u>Ek</u> 1	Σ (γ *ψ * EW	(Fel der: 1,,n)) +1.50*Qk.N
1	1. 35*Gk	+1.50*Qk.N (1,2)
	+0.90*Qk.W	(1, 2)
2	1. 00*Gk	+1.50*Qk. N
		(3)
3 4	1. 00*Gk	
4	1. 35*Gk	+1.50*Qk.N
		(1, 3)
	+0.90*Qk.W	
5	1. 00*Gk	+1.50*Qk.N
		(2) +1.50*Qk.N
6	1. 00*Gk	
		(3)
	+0.90*Qk.W	
7	1. 35*Gk	+1. 50*Qk. N
		(1, 2) +1.50*Qk.N
8	1. 00*Gk	
	0.001.01	(1, 3)
	+0. 90*Qk. W	
9	1. 35*Gk	+1.50*Qk. N
		(2)
10	1. 35*Gk	(2) +1.50*Qk.N
		(2, 3)
11	1. 00*Gk	(2,3) +1.50*Qk.N
		(1)
	+0.90*Qk.W	
12	1. 35*Gk	+1.50*Qk.N
		(3)
13	1. 35*Gk	+1.50*Qk.N

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 148 K6 Teilproj.: Teilprojekt1 Position 04.09.2015 mb BauStatik S312.de 2013.101 Projekt Seebrücke Datum

Σ (γ*ψ * EW (Felder: 1,..,n)) (1,3)

q-st. Komb. Ed, perm

Ekperm	Σ (γ *ψ *	EW (Felder: 1,,n))
14	1. 00*Gk	+0.60*Qk.N
		(1, 3)
15	1. 00*Gk	+0.60*Qk.N
		(2)
16	1. 00*Gk	

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

Tabelle

Schnittgrößen (Umhüllende)

	X	My, d, mi n	Ek	$M_{y, d, max}$	Ek	$V_{z,d,min}$	Ek	$V_{z, d, max}$	Ek
	[m]	[KNm]		[KNm]		[kN]		[kN]	
Kragarm links	0.00	0.00	-	0.00	-	0.00	-	0.00	_
_	2. 10	-100.5	1	-45.04	2	-95.71	1	-42.90	2
Feld 1	0.00	-100.5	4	-45.04	5	63. 16	6	171. 77	7
	0. 05	-95. 79	4	-38.08	5	62.14	6	169. 49	7
	1. 05	-27. 93	8	70. 38	9	30.71	6	90. 32	7
	2. 88	6. 71	8	146. 72	9	-6.56	2	7.14	1
	4. 70	-26.69	8	71. 25	9	-89.68	10	-30.20	11
	5. 70	-93.53	4	-37.08	5	-168. 9	10	-61.62	11
	5. 75	-98. 19	4	-44.03	5	-171.1	10	-62.64	11
Kragarm rechts	0.00	-98. 19	4	-44.03	3	42.41	3	94.60	4
3	2. 10	0.00	-	0.00	-	0.00	-	0.00	-
Nachweise (G7T)	Nachwei	SA im G	ranz	haetaut	dor	· Tranfä	hiak	ait nac	h

<u>Nachweise (GZI)</u>

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

Nachweis E-E Abs. 6.2

Nachweis der Biege- und Querkrafttragfähigkeit x Ek QS/ $M_{y,\,d}$ $V_{z,\,d}$ σ_d Pkt τ_{d}

	[m]	[kNm]	[kN]	[N/mm ²]
Kragarm links	(L = 2.10 m) 2.10 1 1/2	-100. 49	-95. 71	59. 61 38. 61

Feld 1

(L = 5.75 m)0.00 7 1/2 59. 61 69. 29 -100.49 171.77 0.57*

					07.27	
					134.00	
2.87	9	1/3	146. 72	0. 24	127. 58	0.54
					0. 03	
					127. 58	
2.88	9	1/3	146. 72	0. 10	127. 58	0.54
					0.01	

5. 75 10

127. 58 58. 25 1/2 -98.19 -171.14 0. 57 69.03 133.00

Kragarm rechts

(L = 2.10 m)0.00 13 1/2 -98.19

94.60 58.25 38.16

88.10

η

[-]

0.38*

0.37*

 $\sigma_{v,\,d}$

38.61 89.58

04.09.2015

Datum

Proj.BezNeubau einer Seebrücke mit RestaurantSeite149Teilproj.:Teilprojekt1PositionK6

Proiekt

Seebrücke

mb BauStatik S312.de 2013.101

Stabilität Nachweis der Stabilität Festhal tungen x-Koordinaten [m] bzgl. Feldanfang Kragarm links 2.10 GL Feld 1 0.00 GL, 5.75 GL 0.00 GL Kragarm rechts GL: Gabel Lager Globale Beiwerte 93.91 Bezugsschl ankhei tsgrad: $\lambda_1 =$ Trägheitsrad. des Gurtes: if,z =6.99 cm L_c Verei nfachter Ek Abs. kc vorhλ zuΙλ maxM χ η Nachwei s $\lceil m \rceil$ [kNm] -100. 49 0. 28* Kragarm links 2.10 0.59 0.38 1.36 Feld 1 9 1 0.93 146. 72 0. 87* 5.75 0.93 0.81 Kragarm rechts 4 4.20 0.59 -98.19 0.27* 1 0.38 1.39 Nachweise (GZG) Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1993 Verformungsnachweis max. Verformungen W_z Εk Wres W_{zul} Χ [m]L mm] [mm][mm] 6. 21 Kragarm links 0.00 15 6. 21 14.00 0.44 8.01 0.42 Feld 1 2.88 15 8.01 19.17 2.10 15 14.00 0.45 Kragarm rechts 6.32 6.32 Aufl agerkräfte Charakteristische und Bemessungsauflagerkräfte Char. Auflagerkr. Aufl. Fz, k, min $F_{z, k, max}$ [kN] [kN] Einw. Gk $\overline{\mathsf{A}}$ 113. 33 113. 33 В 112.49 112.49 -4.49 76. 32 Einw. Qk. N Ā В -4. <u>60</u> <u>75</u>. 92 Einw. Qk. W Α -0.60 В -0.60 Bem. -auflagerkräfte Aufl. ΕK ΕK Fz, d, min Fz, d, max [KN] [kN] Ā Komb. 6..11 106. 05 267.48 В 265.74 105.05 11 10

<u>Zusammenfassung</u> Zusammenfassung der Nachweise

<u>Nachweise (GZT)</u> Nachweise im Grenzzustand der Tragfähigkeit

Fel d	X	η
	[m]	[-]
Feld 1	0.00 OK	0.57
Feld 1	4. 98 OK	0.87
	Feld 1	[m] Feld 1 0.00 OK

<u>Nachweise (GZG)</u> Nachweise im Grenzzust. der Gebrauchstauglichkeit

Proj.BezNeubau einer Seebrücke mit RestaurantSeite150Teilproj.:Teilprojekt1PositionK6Datum04.09.2015mb BauStatik S312.de2013.101ProjektSeebrücke

Nachwei s	Feld	X	η	
		[m]		[-]
Verformung	Kragarm rechts	2. 10	OK	0.45

Proj.Bez Neubau einer Seebrücke mit Restaurant Seite 151

Teilproj.: Teilprojekt1 04.09.2015 mb BauStatik S312.de 2013.101 Datum

Position Projekt

K7 Seebrücke

fw

Pos. K7 Unterzug - Stahträger

Durchl aufträger System

System z-Richtung

M 1:85

Abmessungen Mat./Querschnitt

Fel d	[m]	Lage [°1	Achsen	Materi al	Profil
KI	2. 10	0.0	fest	S 235	HEB 260
1	5. 75	0.0	fest		
Kr	2 10	0	fest		

Aufl ager

Lager	X	b	Art	$K_{T,z}$	$K_{R, y}$
J	[m]	[cm]		[kN/m]	[kNm/rad]
A	2. 10	20. 0		fest	frei
В	7.85	20. 0		fest	frei

Ei nwi rkungen

Erläuterungen

Einwirkungen nach DIN EN 1990: 2010-12

Gk

<u>Ständige Einwirkungen</u> Qk. N Kategorie C - Versammlungsräume Qk. W

LG 98 Windlasten (min/max Werte)

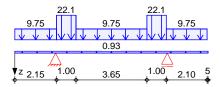
Qk. W

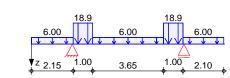
Gruppen (LG) Einwirkungen, die der gleichen Lastgruppe zugeordnet werden, können nicht gleichzeitig

auftreten.

feldweise (fw)

Die Lasten der Einwirkung werden als feldweise


wirkend aufgeteilt.


Belastungen auf das System Bel astungen

Profil Ei gengewi cht Fel d $[cm^2]$ kl-kr HEB 260

Grafi k Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen Gk Qk. N

Proj.Bez Neubau einer Seebrücke mit Restaurant

S

Seite Position 152 K7

е

Teilproj.: Datum

Teilprojekt1 04.09.2015

mb BauStatik S312.de 2013.101


Projekt

qы

qre

Seebrücke

Qk.W

<u>Streckenlasten</u> in z-Richtung

Einw. Gk

Einw. Qk. N

Bl ockl asten Feld Komm.

		[m]	[m]	[kN/mˈ]	[kN/mˈ]	[cm]
KI	Ei gengew	0.00	9. 95		0. 93	0.0
_(a) KI	0 0	2. 15	1.00		22.08	0.0
(b) KI		0.00	2. 15		9. 75	0.0
(b) KI		3. 15	3.65		9. 75	0.0
(a) KI		6.80	1. 00		22. 08	0.0
(b) KI		7.80	2. 10		9. 75	0.0
(a) KI		2. 15	1. 00		18. 85	0.0
(b) KI		0.00	2. 15		6.00	0.0
(b) KI		3. 15	3.65		6.00	0.0
(a) KI		6.80	1.00		18. 85	0.0
(b) KI		7.80	2. 10		6.00	0.0
(a) KI		2. 15	1. 00		-0.64	0.0
(a) KI		6.80	1. 00		-0.64	0.0

а

(a)

Einw. Qk. W

aus Pos. 'K3', Lager 'B' (Seite 137)

(b)

aus Pos. 'K2', Lager 'A' (Seite 133)

Kombi nati onen

Grundkombination Ed

Schnittgrößen gemäß DIN EN 1990

<u>Ek</u>	Σ (γ *ψ * EW	(Felder: 1,,n)) +1.50*Qk.N
1	1. 35*Gk	+1.50*Qk.N (1,2)
	+0. 90*Qk. W 1. 00*Gk	·
2	1. 00*Gk	+1.50*Qk.N (3)
2	1 00*01	(3)
3	1. 00*Gk 1. 35*Gk	. 1 FO*Ok N
4	1. 35 ° GK	+1.50*Qk.N (1,3)
	+0.90*Qk.W	
5	+0. 90*Qk. W 1. 00*Gk	+1.50*Qk. N
6	1. 00*Gk	(2) +1.50*Qk.N
		(3)
	+0.90*Qk.W	
7	+0. 90*Qk. W 1. 35*Gk	+1.50*Qk. N
		(1, 2) +1. 50*Qk. N
8	1. 00*Gk	+1.50*QK.N (1,3)
	+0 90*0k W	(.,, 0)
9	+0. 90*Qk. W 1. 35*Gk	+1.50*Qk. N
10	1 00 * 01.	(2) +1.50*Qk.N
10	1. 00*Gk	+1.50°QK.N (2.3)
11	1. 35*Gk	(2, 3) +1.50*Qk.N
		(1)
	+0. 90*Qk. W 1. 35*Gk	
12	1. 35*Gk	+1.50*Qk. N
13	1. 00*Gk	(2, 3) +1.50*Qk.N
13	I. UU GK	(1)
	+0.90*Qk.W	

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 153 **K7** Teilproj.: Teilprojekt1 Position 04.09.2015 mb BauStatik S312.de 2013.101 Projekt Seebrücke Datum

Ek		/ (Felder: 1,,n))	
14	1. 35*Gk	+1.50*Qk.N	
		(3)	
15	1. 35*Gk	• •	
16	1. 35*Gk	+1.50*Qk.N	
		(1, 3)	

q-st. Komb. Ed, perm

Ekperm	Σ (γ *ψ *	EW (Felder: 1,,n)) +0.60*0k N
17	1. 00*Gk	+0.60*Qk.N
		(1, 3)
18	1. 00*Gk	+0. 60*Qk. N
		(2)
19	1. 00*Gk	<u> </u>

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

	X	$M_{y,d,min}$	Ek	My, d, max	Ek	$V_{z,d,min}$	Ek	$V_{z,d,max}$	Ek
	[m]	[KNm]		[KNm]		[kN]		[kN]	
Kragarm links	0.00	0.00	_	0.00	-	0.00	-	0.00	_
	2. 10	-51.63	1	-23.54	2	-49.17	1	-22.42	2
Feld 1	0.00	-51.63	4	-23.54	5	39. 33	6	106.92	7
	0. 05	-48.75	4	-19.15	5	38.80	6	105.75	7
	1. 05	-10.22	8	46.00	9	16. 37	6	46.42	7
	2.88	8. 17	8	85.42	9	-3.11	2	3.69	1
	4.70	-8. 99	8	46.86	9	-45.78	12	-15.86	13
	5. 70	-46.49	4	-18.15	5	-105.1	12	-38.29	13
	5. 75	-49.33	4	-22.53	5	-106.3	12	-38.82	13
Kragarm rechts	0.00	-49.33	4	-22.53	3	21. 93	3	48.06	4
G	2. 10	0.00	-	0.00	-	0.00	_	0.00	-
Nachweise (GZT)	Nachwei		irenz	zzustand	der	Tragfä	hi gk	ceit nac	h

Nachy	vei	S	<u>E-E</u>
Abs.	6.	2	

Nachweis der Biege- und Querkrafttragfähigkeit x Ek QS/ $M_{y,\,d}$ $V_{z,\,d}$ σ_d τ_d

η

				-u	
	[m]	[kNm]	[kN]	$\sigma_{V,d} = [N/mm^2]$	[-]
Kragarm links	(L = 2.10 m) 2.10 1 1/2	-51. 63	-49.17	30. 62 19. 83 46. 02	0. 20*

Feld 1

				40.02	
	m)				
7	1/2	-51. 63	106. 92	30. 62 43. 13 80. 74	0.34*
9	1/3	85. 42	0. 24	74. 28 0. 03 74. 28	0. 32
9	1/3	85. 42	0. 12	74. 28 0. 01 74. 28	0. 32
12	1/2	-49. 33	-106. 28	29. 26 42. 87 79. 81	0.34
	7 9 9	9 1/3	7 1/2 -51.63 9 1/3 85.42 9 1/3 85.42	7 1/2 -51.63 106.92 9 1/3 85.42 0.24 9 1/3 85.42 0.12	. 75 m) 7 1/2 -51.63 106.92 30.62 43.13 80.74 9 1/3 85.42 0.24 74.28 0.03 74.28 9 1/3 85.42 0.12 74.28 0.01 74.28 12 1/2 -49.33 -106.28 29.26 42.87

Proj.Bez Ne	ubau einer Seebr	ücke mit Resta	ıurant	Se	ite	154
Teilproj.: Te	lprojekt1			Pos	sition	K7
Datum 04	.09.2015 m	b BauStatik S3	12.de 2013.101	Pro	ojekt	Seebrücke
	×	Ek QS/ Pkt	My, d	$V_{z,d}$	σ d τd	η
W	[m]	10)	[kNm]	[kN]	$\sigma_{V,d}$ [N/mm 2]	[-]
Kragarm rechts	(L = 2 0.00	.10 m) 16 1/2	-49. 33	48. 06	29. 26 19. 39 44. 54	0. 19*
<u>Stabilität</u>	Nachwe	is der St	abilität			
Festhaltungen Kragarm links Feld 1 Kragarm rechts	x-Koor 2.10 G 0.00 G 0.00 G GL: Gab	L L, 5.75 G L	m] bzgl. Fo	el danfang		
Globale Beiwerte		schlankhe itsrad. d	itsgrad: es Gurtes:		$\frac{1}{2} = 93.91$ $\frac{1}{2} = 6.99$	
Vereinfachter Nachweis Kragarm Links	Ek Abs	[m]	k _{c vorh} λ	zuιλ 2.65	χ max N [kNm] 51.63	
Feld 1	9	1 5.75 0		1. 60		2 0. 51*
Kragarm rechts	4	1 4.20 0	. 59 0. 38	2. 78	49.33	3 0.14*
Nachweise (GZG)			enzzustand chkeit nac		1993	
Verformungsnachwe	<u>is</u> max. V x	erformung Ek	en Wz	Wres	$W_{ m zul}$	η
Kragarm links Feld 1 Kragarm rechts	[m] 0.00 2.88 2.10	18 18 18	[mm] 4.14 4.87 4.26	[mm] 4.14 4.87 4.26	[mm] 14.00 19.17 14.00	[-] 0.30 0.25 0.30

<u>Aufl agerkräfte</u>	Charakteri sti sche	und	Bemessungsauflagerkräfte

Char. Auflagerkr.	Aufl.	F _{z, k, mi n} 「kN]	F _{z, k, max} [kN]
Einw. Gk	A	65. 62	65. 62
Einw. Qk.N	<u>B</u>	64. 78 -2. 19	64. 78 45. 00
ETTIW. QK. N	В	-2. 19 -2. 30	44. 59
Einw. Qk.W	A	-0.64	
	В	-0.64	
Rem -auflagerkräfte	≏ Aufl	Fzdmin FK	Fadmay FK

Bemauflagerkräfte	Aufl.	F _{z, d, min} [kN]	EK	F _{z,d,max} ΓkN]	EK
Komb. 613	A	61. 76	6	156.09	7
	B	60. 75	13	154.34	12

 Proj.Bez
 Neubau einer Seebrücke mit Restaurant
 Seite
 155

 Teilproj.:
 Teilprojekt1
 Position
 K7

 Datum
 04.09.2015
 mb BauStatik S312.de
 2013.101
 Projekt
 Seebrücke

Zusammenfassung	Zusammenfassung der Nachweise			
Nachweise (GZT)	Nachweise im Grenzzustand der Tragfähigkeit			
	Nachwei s	Feld	X [m]	η [-]
	Nachweis E-E Stabilität	Feld 1 Feld 1	0.00 OK 4.98 OK	
Nachweise (GZG)	Nachweise im Gren			
	Nachwei s	Feld	X	η
	Verformung	Kragarm rechts	[m] 2.10 OK	0.30

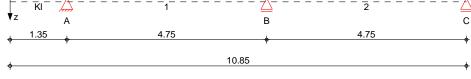
Proj.Bez Neubau einer Seebrücke mit Restaurant Seite

Teilproj.: Teilprojekt1 04.09.2015 Datum

mb BauStatik S312.de 2013.101

Position

156 K8


Projekt Seebrücke

Pos. K8 Unterzug - Stahträger

Durchl aufträger System

System z-Richtung

M 1:90

Abmessungen Mat./Querschnitt

Feld	I	Lage	Achsen	Materi al	Profil
	[m]	[°]			
KI	1. 35	0.0	fest	S 235	HEB 260
1-2	4. 75	0.0	fest		

Aufl ager

Lager	X	b	$Art K_{T,z}$	K _{R, y}
•	[m]	[cm]	[kN/m]	[kNm/rad]
A	1. 35	20. 0	fest	frei
В	6. 10	20.0	fest	frei
С	10.85	20. 0	fest	frei

Ei nwi rkungen Einwirkungen nach DIN EN 1990: 2010-12

Gk

<u>Ständige Einwirkungen</u> <u>Kategorie C - Versammlungsräume</u> Qk. N fw LG 98 Qk. W Windlasten

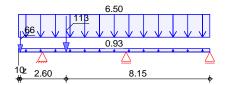
Qk. W (min/max Werte)

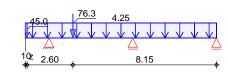
Erläuterungen Gruppen (LG)

Einwirkungen, die der gleichen Lastgruppe zugeordnet werden, können nicht gleichzeitig auftreten.

feldweise (fw)

Die Lasten der Einwirkung werden als feldweise


wirkend aufgeteilt.


Belastungen auf das System Bel astungen

Profil Ei gengewi cht Fel d [cm²] $\overline{kI-2}$ HEB 260

Grafi k Belastungsgrafiken (Einwirkungsbezogen)

Ei nwi rkungen Gk Qk. N

Proj.BezNeubau einer Seebrücke mit RestaurantSeite157Teilproj.:Teilprojekt1PositionK8

04.09.2015 mb BauStatik S312.de 2013.101

Position Projekt

Seebrücke

Qk.W			
-0.64	-0.60		
		\triangle	\triangle
10z 2.60	+		

Streckenlasten

Datum

in z-Richtung

Einw. Gk

Einw. Qk. N

(a)

(b)

<u>Punktlasten</u> in z-Richtung

Einw. Gk

Einw. Qk. N

Einw. Qk. W

(b)

Gl ei chl asten

Fel d	Komm.	а	S	qı i	q re	е
		[m]	[m]	[kN/mˈ]	[kN/mˈ]	[cm]
ΚI	Ei gengew	0.00	10. 85		0. 93	0.0
ΚI	0 0	0.00	10. 85		6. 50	0.0
ΚI		0.00	10.85		4. 25	0.0

aus Decke

(a)

(b)

aus Decke

реске

4.25*1 =

6.5*1 =

4.25 kN/m

kN/m

6.50

Einzellasten Feld Komm

Feld Komm.	а	F_z	е
	[m]	[kN]	[cm]
(a) KI	0. 10	65. 62	0.0
(b) 1	1. 35	113. 33	0.0
(a) KI	0. 10	45.00	0.0
(b) 1	1. 35	76. 32	0.0
(a) KI	0. 10	-0.64	0.0
(b) 1	1. 35	-0.60	0.0

(a) aus Pos. 'K7', Lager 'A' (Sei te 154)

aus Pos. 'K6', Lager 'A' (Seite 149)

<u>Kombinationen</u> Grundkombination Ed Schnittgrößen gemäß DIN EN 1990

<u>Ek</u>	Σ (γ *ψ * EW	(Fel der: 1,,n)) +1.50*Qk.N
1	1. 35*Gk	
		(1)
2 3 4	1. 00*Gk	
3	1. 00*Gk	+1.50*Qk.W
4	1. 35*Gk	+1. 50*Qk. N
		(1, 3) +1.05*Qk.N
5	1. 00*Gk	
		(2)
	+1.50*Qk.W 1.00*Gk	
6	1. 00*Gk	+1.50*Qk. N
		(3)
	+0. 90*Qk. W	
7	1. 35*Gk	+1.50*Qk.N
		(1, 2) +1.50*Qk. N
8	1. 00*Gk	
		(2)
	+0. 90*Qk. W 1. 00*Gk	4 FO+OL N
9	1. 00*GK	+1.50*Qk.N
	0.00401.W	(1, 3)
10	+0. 90*Qk. W 1. 35*Gk	1 FO+OL N
10	1.35^GK	+1.50*Qk. N
11	1 25*01.	(2) +1.50*Qk.N
11	1. 35*Gk	+1.5U^UK.N
	0 00*01. W	(2, 3)
10	+0. 90*Qk. W 1. 00*Gk	1 FO*OL N
12	1. UU^GK	+1.50*Qk.N
		(1)

Neubau einer Seebrücke mit Restaurant Proj.Bez Seite 158 K8 Teilproj.: Position Teilprojekt1 04.09.2015 mb BauStatik S312.de 2013.101 Projekt

Ek	Σ (γ *ψ * EW	(Felder: 1,,n))
13	1. 35*Gk	+1.50*Qk.N
		(2)
	+0.90*Qk.W	
14	1. 00*Gk	+1.50*Qk.N
		(1, 3)
15	1. 00*Gk	+1.05*Qk.N
		(3)
	+1.50*Qk.W	• •

Seebrücke

η

q-st. Komb. Ed, perm

Datum

Ekperm	Σ (γ * ψ *	EW (Felder: 1,,n))
16	1. 00*Gk	+0.60*Qk.N
		(1, 3)
17	1. 00*Gk	+0.60*Qk.N
		(2)
18	1. 00*Gk	

Bem. -schni ttgrößen

Bemessungsschni ttgrößen

<u>Tabel I e</u>

Schnittgrößen (Umhüllende)

	X	My, d, mi n	Ek	$M_{y, d, max}$	Ek	$V_{z,d,min}$	Ek	$V_{z,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
Kragarm links	0.00	0.00	-	0.00	-	0.00	-	0.00	-
-	0. 10	-0.08	1	-0.04	2	-1.64	1	-0.74	2
	0. 10	-0.08	1	-0.04	3	-157. 7	1	-65.40	3
	1. 35	-210. 1	1	-87. 59	3	-178. 2	1	-74.69	3
Feld 1	0.00	-210. 1	4	-87. 59	5	107.88	6	260.37	7
	1. 35	-7.35	9	184. 65	10	97.86	6	238. 23	7
	1. 35	-7.35	9	184. 65	10	-54.88	11	10. 69	12
	4. 75	-99. 28	11	-11.36	12	-110.6	11	-14.56	12
Feld 2	0.00	-99. 28	11	-11. 36	12	20.03	12	59.85	11
	2. 76	-12.47	8	31. 54	4	-1.02	14	15. 16	13
	4.75	0.00	-	0.00	-	-32.17	4	-1.13	8

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1993

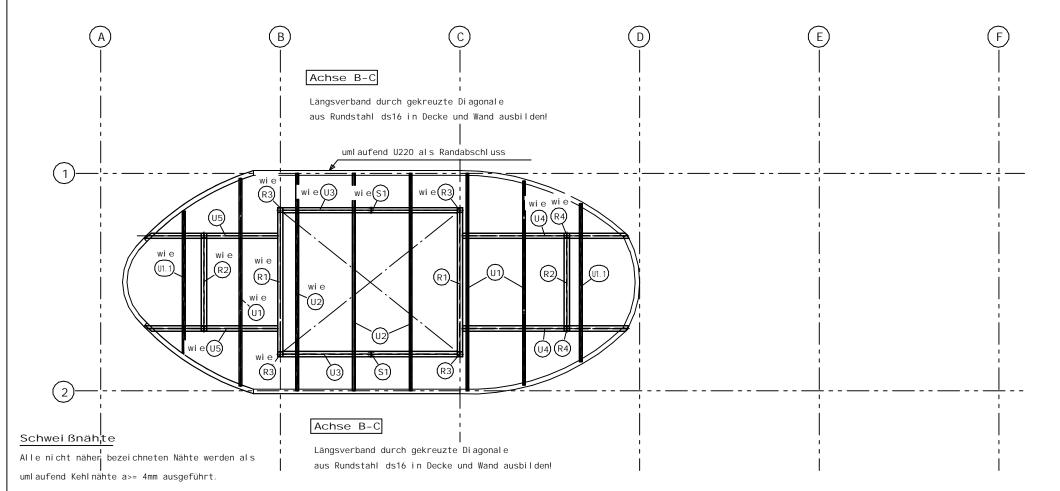
<u>Nach</u>	<u>weis</u>	; E-	<u>- E</u>
Abs.	6. 2	2	

Nachweis der Biege- und Querkrafttragfähigkeit Ek QS/ My, d $V_{z,d}$ σ_{d} Pkt τ_{d} $\sigma_{\text{V, d}}$

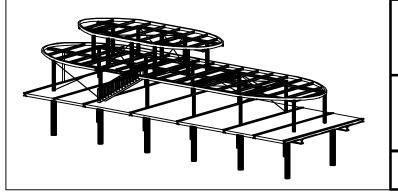
	[m]	[kNm]	[kN]	[N/mm ²]	[-]
Kragarm links	(L = 1.35 m) 0.10 1 1/1	-0. 08	-157. 73	0. 00 67. 76 117. 37	0. 50
	1. 35 1 1/2	-210. 06	-178. 23	182. 66 18. 83 185. 55	0. 79*

1

(L = 4	. 75	m)				
0.00	7	1/3	-210. 06	260. 37	124. 60 105. 03	0.94*
					220. 49	
0.37	7	1/3	-114.14	254. 26	67. 70	0.81
					102. 56 190. 11	
1. 35	10	1/3	184. 65	214. 50	109. 53	0.79


Proj.Bez	Neubau einer	Seebrücke mit Restaurant		Seite	159
Teilproj.:	Teilprojekt1			Position	K8
 Datum	04.09.2015	mb BauStatik S312.de	2013.101	Projekt	Seebrücke
				•	

						•	
	Х	Ek	QS/ Pkt	My, d	$V_{z,d}$	$\sigma_{ extsf{d}}$	η
	[m]			[kNm]	[kN]	$\sigma_{V,d}$ [N/mm 2]	[-]
	[,,,]			[KIVIII]	[KN]	86. 52	
	2.07	10	1/2	142. 11	-64. 83	185. 62 123. 57 6. 85 124. 14	0. 53
	4. 75	11	1/3	-99. 28	-110. 64	58. 89 44. 63 97. 18	0. 41
Feld 2	(L = 4	. 75	m)				
	0.00	11	1/2	-99. 28	59. 85	86. 33 6. 32 87. 03	0. 37*
	1. 45	13	1/2	-38.83	28. 31	33. 77 2. 99	0. 15
	2. 76	4	1/2	31. 54	0. 53	34. 16 27. 43 0. 06 27. 43	0. 12
	2. 81	4	1/2	31. 55	-0. 30	27. 43 0. 03 27. 43	0. 12
	4. 75	4	1/1	0. 00	-32. 17	0. 00 13. 82 23. 94	0. 10
<u>Stabilität</u>	Nachwe	is c	ler Sta	abilität			
Festhaltungen Kragarm links Feld 1 Feld 2	x-Koor 1.35 G 0.00 G 0.00 G GL: Gab	L L, 4 L	l. 75 GL	n] bzgl. F -	el danfang		
Globale Beiwerte	Bezugs Träghe	schl i tsr	ankhei ad. de	tsgrad: es Gurtes:		1 = 93.91 z = 6.99	
Verei nfachter	Ek Abs		Lc	k_{c} vorh λ	zuΙλ	χ max M	η
Nachweis Kragarm links	1	1 1	[m] .35 O.	71 0.29	0.65	[kNm] 210.06	0.44*
Feld 1	13	1 4	1. 75 0.	80 0.58	0.74	- 184.64	0. 78*
Feld 2	13	1 4	1. 75 0.	57 0.41	1. 52	90.29	0. 27*
Nachweise (GZG)				enzzustand chkeit nac		1993	
<u>Verformungsnachweis</u>	max. V	erfo Ek	rmunge	en Wz	\\/	W_{zul}	m
Kragarm links Feld 1 Feld 2	x [m] 0.00 2.07 1.45	16 17 17		Wz [mm] 3.94 4.52 0.94	Wres [mm] 3.94 4.52 0.94	9. 00 15. 83 15. 83	η [-] 0. 44 0. 29 0. 06



Proj.BezNeubau einer Seebrücke mit RestaurantSeite160Teilproj.:Teilprojekt1PositionK8Datum04.09.2015mb BauStatik S312.de2013.101ProjektSeebrücke

<u>Auflagerkräfte</u>	Charakteri sti sche	und Bemessungsau	flagerkräfte
Char. Auflagerkr.	Aufl.	F _{z, k, mi n} 「kN1	F _{z, k, max}
Einw. Gk	A B C A	185. 96 63. 07 10. 50	[kN] 185.96 63.07 10.50
Einw. Qk. N	A B C A	-1. 26 -18. 99 -6. 25	10. 30 125. 04 56. 90 12. 00
Einw. Qk.W	A B C	-0. 25 -1. 24 0. 00	0.00
Bemauflagerkräfte	Aufl.	F _{z, d, min} EK [kN]	F _{z, d, max} EK [kN]
Komb. 415	A B C	182. 78 15 34. 59 12 1. 13 8	438.60 7 170.49 11 32.17 4
Zusammenfassung	Zusammenfassung d	er Nachweise	
Nachweise (GZT)	Nachweise im Gren	zzustand der Trag	fähi gkei t
	Nachweis E-E	Feld 1	χ η [m] [-] Ο.ΟΟ ΟΚ Ο.94
	Stabili tät	Feld 1	2. 70 OK 0. 78
Nachweise (GZG)	Nachweise im Gren	zzust. der Gebrau	chstaugl i chkei t
	Nachweis Verformung	Feld Kragarm Links	χ η [m] [-] Ο.ΟΟ ΟΚ Ο.44
	verrormany	Kragarm links	0.00 UK 0.44

Bei bündigen Anschlußplatten wird die entsprechende naht als HY-Naht a>= 5mm ausgeführt.

Tragwerksplanung:	BAUPLANUNGSBÜRO
	Architektur Baustatik Projektleitung Mike Prudlik Dipl.—Ing.(FH
	Gemniak.Dorfstr.47a - 14822 Breck

Neubau einer Seebrücke mit Restaurant und Aussichtsterrasse Campingplatz Himmelreich Wentorfinsel 14548 Schwielowsee OT Caputh

Telefon: 033844-51073 Telefax: 033844-51999 Funk: 0172-3837135

e-mail: mp-brueck@t-online.de

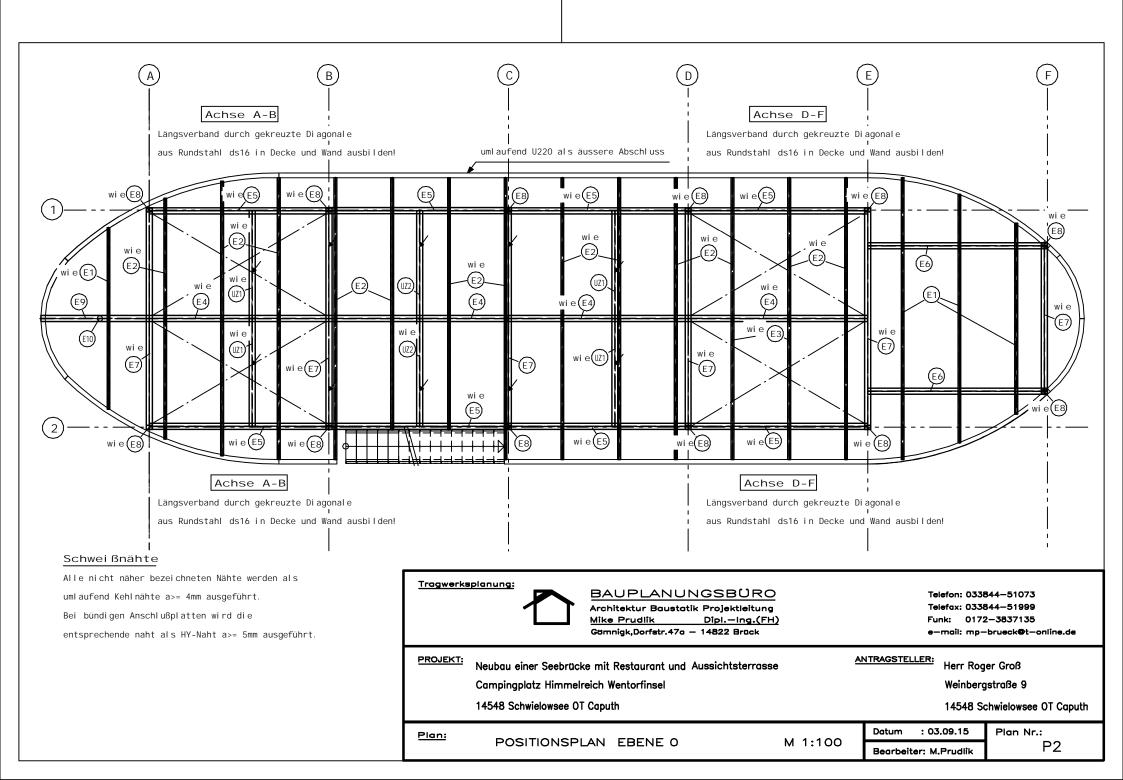
ANTRAGSTELLER:

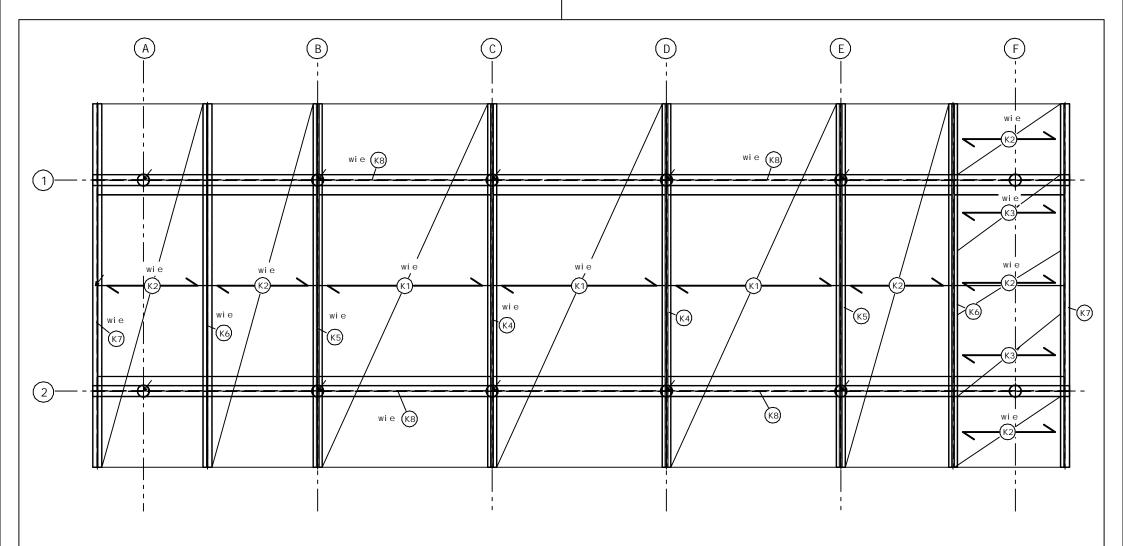
Herr Roger Groß Weinbergstraße 9

14548 Schwielowsee OT Caputh

<u>Plan:</u>

PROJEKT:


POSITIONSPLAN EBENE +1


M 1:100

Datum : 03.09.15 Plan Nr.:

Bearbeiter: M.Prudlik

P1

Schwei ßnähte

Alle nicht näher bezeichneten Nähte werden als umlaufend Kehlnähte a>= 4mm ausgeführt. Bei bündigen Anschlußplatten wird die entsprechende naht als HY-Naht a>= 5mm ausgeführt.

14548 Schwielowsee OT Caputh

Campingplatz Himmelreich Wentorfinsel

BAUPLANUNGSBÜRO Architektur Baustatik Projektleitung

Mike Prudlik Dipl.-Ing.(FH) Gömnigk,Dorfstr.47a - 14822 Brück

e-mail: mp-brueck@t-online.de

ANTRAGSTELLER: Herr Roger Groß

Telefon: 033844-51073

Telefax: 033844-51999

Funk: 0172-3837135

Weinbergstraße 9

14548 Schwielowsee OT Caputh

Plan:

PROJEKT:

POSITIONSPLAN EBENE Statzenraster

Neubau einer Seebrücke mit Restaurant und Aussichtsterrasse

M 1:100

Datum : 03.09.15 Plan Nr.: Р3

Bearbeiter: M.Prudlik